

ABOUT RAICOL CRYSTALS LTD.

Raicol Crystals Ltd. specializes in the manufacture of high quality nonlinear optical crystals and electro-optic devices. Founded in 1995, we are a privately owned technology company, based in Israel.

Our Vision:

Our vision is to become a world-leading crystal manufacturing company, creating cutting-edge solutions for a wide range of applications in the laser optics market.

Our products:

Electro Optical Cells: RTP, KRTP, BBO Frequency conversion elements:

- KTP for SHG and OPO
- HGTR KTP & SKTP for High Power SHG
- Super Polished LBO for SHG and THG
- BBO for frequency conversion
- PPKTP / PPLN

Raicol Ltd. has ISO 9001 certification, meeting high global standards for quality control. We are also NASA certified.

Table of contenet

RTP EO Cells	3-6
KTP OPO Crystals	7-8
HGTR KTP Crystals	9-12
Super KTP Crystals	13-14
PPKTP Crystals	15-16
Super Polished LBO Crystals	17-20
BBO Crystals and EO Cells	21-22
Our Production Site	23-24
Raicol's in House Testing Capabilities	25-26

RTPEO Cells

Used for electro-optics applications, RTP crystals offer superior properties for users in the Aerospace, Defense, Medical, Industrial, Civil and Scientific applications.

RTP EO Cells are assembled in a thermally compensated double-crystal configuration, in which two matched crystals are placed in line of the propagation axis (X or Y) with one rotated by 90 degrees (general drawing below).

Common Applications

Q Switches | Pulse pickers Phase modulators | Amplitude modulators Cavity dumpers | Shutters Attenuators & Deflectors

RTP EO Cell Structure

Advantages

- Low half-wave voltage for EO Cells to enable a compact design
- Rise time, fall time, and pulse width of 1 ns which enables fast operation
- Designed to operate at a wide temperature range (-50° C to 70° C)
- High laser-induced damage threshold (up to1000 MW/cm², @1064 nm, 10 ns pulse)
- Minimal ringing, compatible for 1 MHz
 repetition rate
- Non-hygroscopic, easy handling, no cover needed
- The best material in the spectral range of 500-3000 nm for electro-optics applications
- Very low absorption losses @1064 nm wavelength
- Extremely high homogeneity: up to 15×15 mm²
 EO cells as a standard size

RTP EO Cell Product Offerings

- Thermally compensated matched pair of RTP Elements
- Single RTP Element (used for phase modulators)
- Plug in 2 crystals, Electro-optical cells assembly (with / without housing)

Typical Specifications for RTP EO Cells

Operational Range	500-3000 nm
Transmission @1064 nm	> 99%
Half Wave Voltage	3.6 kV (for EO Cell size: 9×9×10 mm²)
Extinction Ratio	Up to 30 dB
Clear Aperture	1.5×1.5 mm² to 15×15 mm²
Crystal Length	Up to 50 mm
Acceptance Angle	< 4 deg.
Standard AR Coating @1064 nm	R < 0.1%
Laser Induced Damage Threshold	Up to 1 GW/cm², @1064 nm, 10 ns pulse or 10J/cm²

Raicol's RTP Benefits

- · Low half-wave voltage to enable a compact design
- High Damage Threshold (600MW/cm² in typical value 1GW/cm²)
- High Extinction Ratio (ER) up to 30-35 dB
- No acoustic ringing
- Wide acceptance angle
- Suitable for Military and Space application due
 - to it's wide temperature range (-50° C to 70° C)
- Non-hygroscopic material
- Low electrical conductivity Rise time / fall time >1ns

EO Cells – Crystals Comparison

Properties	LiNbOз	RTP X-cut
Half Wave Voltage @1064 nm for L=d (kV)	9	8
Dielectric constant ٤	27.9	11
Average Power Density (W/cm ²)	150	300
Laser Induced Damage Threshold (MW/cm²)	280	600
Available Aperture (mm²)	>8x8	2x2 to 16x16
Extinction Ratio (dB)	>23	23-35
Temperature Stability *Pyro electric effect	Not stable at T<-20°C	-50° to 70°C
Acoustic Ringing	10 Khz	>1 MHz
Hygroscopic	No	No
Mechanically Stable	Medium	Good

RTP Y-cut	KRTP	KD*P	BBO
6.5	7	9	48
11	11	48	8
200	800	250	>1,000
600	600	500	>1,000
2x2 to 6x6	2x2 to 6x6	5x5 to 20x20	1x1 to 12x12
23-30	23-30	23-30	>30
-50° to 70°C	-50° to 70°C	Not stable	Good
>1 MHz	>1 MHz	10 KHz	25 KHz
No	No	Yes	Yes
Good	Good	Low	Good

KTP OPO Crystals

KTP OPO (Optical Parametric Oscillator) is the most efficient material for converting 1064 nm wavelength laser to 1572 nm ("eye safe") and other wavelengths.

Advantages

- Aperture up to 30x30 mm²
- Length up to 40 mm
- Available in Regular, Monolithic (Single and Double pass with Mirror coating), Plano-Plano and Confocal OPO configurations
- NCPM for eye-safe signal (1572 nm) No Walk-Off
- Efficiency of Monolithic OPO is 20-30% higher than a typical OPO
- Divergence of Laser with Confocal OPO is lower than Plano-Plano OPO
- Walk-Off Compensating design (WOC) available at 2.1µm

Common Applications

- Laser Range Finders (LRF)
- Laser designators
- Other civil and LIDAR, Space applications

Typical Specifications for OPO pumped @1064 nm to 1572 nm

Aperture	Up to 30x30 mm ²
Orientation	$\Theta = 90^{\circ}$ $\Phi = 0^{\circ}$
Absorption Coefficient	α < 50 ppm cm ⁻¹ @1064 nm
Length	Up to 40 mm along X axis
Flatness	λ/10 @633nm
Optical Wedge (polarization along Y axis)	10 arc sec.
Perpendicularity	10 arc min.
Scratch/Dig	10/5
AR Coatings	DBAR @1064/1572, R<0.2% for both wavelengths
Wave Front Distortion	λ/5 @633nm
Guaranteed Laser Included Damage Threshold	600 MW/cm ² (with coating) @1064 nm, for 10 ns pulses

HGTR KTP High Gray Track Resistance Crystals

Raicol was the first to develop High Gray Track Resistance flux grown KTP crystals that enables higher average power density in SHG of 1000-1400 nm. Gray tracks are produced when a crystal is subjected to high power, high repetition rate laser pulses or CW laser irradiation. The gray tracks occur due to induced color centers in the KTP crystal that have broad optical absorption in the visible and near infrared wavelengths, especially at 532 nm. The process of the gray track formation is cumulative and leads to deterioration of harmonic conversion.

Advantages

- Average output power density at 532 nm up to 5 kW/ cm² according to laser regime
- Nonlinear coefficient 4 times higher than LBO
- · Low absorption at visible and near infrared wavelengths
- Broad temperature bandwidth
- Non-hygroscopic material
- Small walk-off and wide angular bandwidth

Common Applications

Medium power green lasers for medical, industrial, scientific and other applications

Typical Specifications for HGTR KTP

Aperture	up to 6x6 mm²
Length	up to 12 mm
Flatness	λ/10 @633nm
Parallelism	10 arc sec.
Perpendicularity	10 arc min.
Scratch/Dig	10/5
AR Coatings	DBAR @1064/532nm, R<0.1% @1064nm and R<0.5% @532 nm
Absorption Coefficient	< 50 ppm cm ^{.1} @1064 nm < 200 ppm cm ^{.1} @532 nm
Output Average Power Density @532 nm	up to 5 kW/ cm²
Laser Induced Damage Threshold	600 MW/ cm² @1064 nm, for 10 ns pulses 10 pps

HGTR KTP High Gray Track Resistance Crystals

Comparison of Gray - Tracking Effect in KTP Crystals @1064nm absorption growth under 10 KW/cm² of green light @532

HGTR KTP GRIIRA Graph

Curve dynamics time depends of absorption in the crystal bulk @532 nm-radiation under self-radiation (532nm). This parameter indicates the effectiveness and gray tracking resistance of the crystals. This suggests the crystal's life time - the smaller the value, the longer the expected lifetime.

HGTR KTP Coating Absorption Graph @1064

SKTP High Gray Track Resistance Crystals

Raicol is the first to develop High Gray Track Resistance flux grown KTP crystals, enabling a higher average power density for the second-harmonic generation (SHG) of 1000-1400 nm laser sources. When a crystal is subjected to high power, high repetition rate laser pulses, or CW laser irradiation, gray tracks are often produced. These gray tracks occur due to induced color centers in the KTP crystal that have broad optical absorption in the visible and near infrared wavelengths, especially @532 nm. The process of the gray track formation is cumulative, and leads to deterioration of harmonic conversion. Raicol's new SKTP crystal allows for use at a high power density, while also providing effective gray track resistance to eliminate the gray track effect.

Advantages

- Available for a wide range of apertures up to 25x25 mm²
- Average output power density of up to 3 kW/cm², at 532 nm, according to the laser regime
- · Increased nonlinear coefficient 4 times higher efficiency than LBO crystals
- · Low absorption at visible and near infrared wavelengths
- Broad temperature capability
- Non-hygroscopic material
- · Small walk-off and wide angular bandwidth

Common Applications

Medium power green lasers for medical, industrial, scientific and other applications

KTP Types - Specifications Comparison

	КТР	SKTP NEW	HGTR
Bulk Absorption 1064 nm (ppm/cm)	300	75	50
Bulk Absorption 532 nm (ppm/cm)	3000	250	150
Gray Tracking (change of SHG absorption in 532 nm GRIIRA 600 Sec) ppm/cm*	2000	200	150
Max Aperture nm (mm²)	50X50	20X20	6X6
Peak LIDT 1064 (MW/cm²) (10ns, 10Hz)	600	600	600
Ave. Power Density @1064 nm (W/cm²) Threshold	300	3000	4000
Ave. Power Density @532 nm (W/cm²) Threshold	10	2000	2500
Resistivity (Ohm*cm)	10 ⁷	10 ⁹ - 10 ¹⁰	10 ¹⁰ - 10 ¹¹

*Curve dynamics time depends of absorption in the crystal bulk @532 nm-radiation under self-radiation (532nm). This parameter indicates the effectiveness and gray tracking resistance of the crystals. This suggests the crystal's life time - the smaller the value, the longer the expected lifetime.

PPKTP Periodically Poled KTP

Periodically Poled KTP (PPKTP) is a unique type of nonlinear material that is based on quasi-phase matching (QPM). It can be tailor-made for all nonlinear applications within the transparency range of KTP, without the phase matching limitations of birefringent matching used in regular KTP interactions. Its effective nonlinear coefficient is about three times larger than that of bulk KTP. Raicol has more than 20 years experience in developing and manufacturing PPKTP for various applications. The company pioneered an original manufacturing process that has allowed reliable supply of PPKTP over the years. Raicol offers PPKTP in large production quantities, as well as small quantities for R&D activities.

Advantages

- Highest nonlinear coefficient
- Free of Walk-Off
- Large quantities for OEM mass-production as well as small quantities for R&D
- Broad phase-matching range
- Type 0 or type II interaction

Common Applications

SHG, SFG, DFG, SPDC and OPO applications from visible up to mid IR

Typical Specifications for PPKTP:

Transparency Range:	350-4000 nm
Length:	Up to 30 mm
Standard Aperture*:	1×2 up to 1X10 mm ²
Operating Temperature	Near room temperature / Per request
Coating Options:	Extra/Intra cavity, AR/AR, AR/HR, DBAR, TBAR, IBS
Laser Induced Damage Threshold	600 MW/cm ² @1064 nm, for 10 ns pulses

*Custom apertures are available upon request

LBOCrystals

LBO (Lithium Triborate LiB₃O₅) is a nonlinear optical

crystal ideally suitable for various nonlinear optical applications. LBO crystals combine wide transparency, moderately high nonlinear coupling, high damage threshold and good chemical and mechanical properties.

Special Advantages of our LBO:

- Super polished elements for excellent surface quality: roughness < 3Å RMS and scratch dig 2/1
- Very low bulk absorption: up to 2ppm/cm @1064nm
- Crystal size up to 50x50 mm² and maximum length of 50 mm
- Strict quality control

Our LBO features:

- Wide transparency range (160nm 2600nm)
- Moderately high nonlinear coefficient
- High damage threshold
- Type I and II phase matching in a wide wavelength range
- High optical homogeneity
- Wide acceptance angle and small walk-off angle

Common Applications

 Second and third harmonic generation of high power diode pumped Nd:YAG and Nd:YLF lasers, Alexandrite, Ti:Sapphire, Dye lasers and ultrashort pulse lasers

ROUGHNESS MEASUREMENTS BY ZYGO INTERFEROMETER

Typical Specifications for LBO:

Apertures	Up to 50x50 mm ²
Length	Up to 50 mm along x axis
Flatness	Up to λ/10 @1064nm
Roughness	<3Å RMS
Parallelism	Up to 5 arc sec.
Perpendicularity	Up to 5 arc min.
Scratch/Dig	2/1 up to 0/0 per custom demand
AR Coatings	Dual band R < 0.1%
Absorption Coefficient	<bulk (1064nm)="2-4" cm<br="" ppm=""><surface (1064nm)="1-2" ppm<br=""><bulk (532nm)="8ppm/cm<br"><surface (532nm)="1-2" ppm<="" td=""></surface></bulk></surface></bulk>
Wave Front Distortion	λ/8 @633 nm
Laser induced Damage Threshold	800 MW/cm ² @1064 nm 500 MW/cm ² @532 nm 300 MW/cm ² @355 nm For 10 ns pulses

LBO Crystals

Surface absorption performed @532nm on LBO crystal AR coated @1064/532nm

- Standard LBO Crystal

- Super Polished LBO Crystal

Graph clearly highlights that surface absorption at 532nm performed on coated LBO Superpolished crystal (roughness <3Å) is about 4 times less absorbent than standard polished coated LBO crystal (roughness of ~10Å).

Based on this difference, LBO Superpolished crystals made at Raicol should exhibit longer lifetime.

BBO Crystals and EO Cells

Beta-barium borate (BBO) is a versatile nonlinear crystal ideally suited for nonlinear laser interactions.

BBO crystals combine very wide transparency, moderately high nonlinear coupling, high damage threshold and good chemical and mechanical properties. BBO phase matches over a wide range, yielding SHG, SFD and OPO from 190 to 1780 nm.

Advantages

- Very wide transparency range
- High damage threshold
- Moderately high nonlinear coefficient
 High optical homogeneity
- Wide temperature-bandwidth

Common Applications

- Second, third, fourth, and fifth harmonic generation of ND:Yag lasers
- Second, third, and fourth harmonic generation of Ti: Sapphire and Alexandrite lasers
- SHG of Argon, Cu Vapor and Ruby lasers
- OPO of UV and visible wavelengths
- Electro-optics

Typical Specifications for BBO

Aperture	Up to 15x15 mm ²
Length	Up to 20 mm
Flatness	Up to λ/10 @633nm
Perpendicularity	Up to 5 arc min.
Parallelism	Up to 5 arc sec.
Scratch/Dig	10/5
AR Coatings	AR/AR, DBAR dual band R < 0.2 %
Absorption Coefficient	< 50ppm cm ⁻¹ @1064nm < 100ppm cm ⁻¹ @532nm
Wave Front Distortion Control	λ/8 @633nm
Guaranteed Laser Induced Threshold	1 GW/cm² @1064 nm 500 MW/cm² @532 nm For 10 ns pulses

Crystals Table of Contents

NONLINEAR CRYSTALS

Lithium Triborate – LBO	2.2
Beta Barium Borate – BBO	2.4
Potassium Dideuterium Phosphate – KDP, DKDP	2.6
Potassium Titanyl Phosphate – KTP	2.8
Potassium Titanyle Arsenate – KTA	2.10
Lithium Niobate – LiNbO3	2.11
Lithium Iodate – LiIO ₃	2.12
Infrared Nonlinear Crystals	2.13
Ultrathin Nonlinear Crystals	2.16

LASER CRYSTALS

Neodymium Doped Yttrium Aluminium Garnet – Nd:YAG	2.18
Yb-Doped Potassium Gadolinium Tungstate - Yb:KGW, Yb:KYW	2.19
Nd-Doped Potassium Gadolinium Tungstate – Nd:KGW	2.20
Titanium Doped Sapphire – Ti:Sapphire	2.20

TERAHERTZ CRYSTALS

RAMAN CRYSTALS

Crystals for Stimulated Raman Scattering – KGW, Ba(NO ₃) ₂	2.22
Barium & Strontium Tungstate-Molybdate – BaWO ₄	2.23
Passive Q-switching Crystals – Co ²⁺ :MgAl ₂ O ₄ , Cr ⁴⁺ :YAG	2.24

POSITIONERS & HOLDERS

Ring Holders for Nonlinear Crystals 830-0001	2.25
Kinematic Positioning Mount 840-0193	
Positioning Mount for Nonlinear Crystal Housing 840-0199	2.26

CRYSTAL OVENS

Temperature Controller TC2 with Oven CO1	. 2.27
Heatpoint Crystal Ovens	. 2.28
Oven for Nonlinear Crystals CH8	. 2.29
Oven for Nonlinear Crystals CH9	. 2.30

Nonlinear Crystals

LBO

 Wide transparency region Broad Type 1 and Type 2

(NCPM) range

Small walk-off angle

High damage threshold

Wide acceptance angle

High optical homogeneity

Non-critical phase-matching

LITHIUM TRIBORATE

LBO is well suited for various nonlinear optical applications:

- frequency doubling and tripling of high peak power pulsed Nd doped, Ti:Sapphire and Dye lasers
- optical parametric oscillators (OPO) of both Type 1 and Type 2 phase-matching
- non-critical phase-matching for frequency conversion of CW and quasi-CW radiation.

250

200

100

50

0 50

ပ္စ 150

erature

Tempe

Ę ength λ, μ 2 Туре wave ental Fundan Type 2

STANDARD SPECIFICATIONS

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10-5 scratch & dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture

WE OFFER:

- Crystals length up to 90 mm and aperture up to 60 × 60 mm
- Thin crystals down to 10 µm thickness
- AR, BBAR, P-coatings
- Different mounting and repolishing services

Please contact **EKSMA OPTICS** for special OEM and large volume pricing.

LBO-508

5x5x15

42.2

90

		0.8	1.0	1.2 1.4 1.6 1.8	3 90 60 30 0 0	30 60
			Fu	ndamental wavelength λ, μm	Phase-matching angle, deg Phase-	matching angle, d
		NCI	PM SHG te	emperature dependance of LBO	SHG tuning curves of LBO	
TANDAR	D CRYST	ALS L	IST			
Code	Size, mm	θ, deg	φ , deg	Coating	Application	Price, EUR
.BO-401	3x3x10	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	245
BO-402	3x3x15	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	325
BO-301	4x4x10	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	510
BO-302	4x4x15	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	630
BO-303	4x4x20	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	745
BO-501	5x5x10	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	655
BO-503	5x5x15	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	765
BO-502	5x5x20	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	940
BO-404	3x3x15	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	325
BO-405	3x3x20	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	405
BO-409	3x3x30	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	710
BO-410	3x3x50	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	1300
BO-304	4x4x10	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	510
BO-305	4x4x15	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	630
LBO-306	4x4x20	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	745
BO-406	3x3x10	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	245
BO-407	3x3x15	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	325
BO-307	4x4x10	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	510
BO-308	4x4x15	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	630
BO-507	5x5x10	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	655

AR/AR @ 1064+532/355 nm

765

THG @ 1064 nm

RAMAN CRYSTALS

TERAHERTZ CRYSTALS

PHYSICAL AND OPTICAL PROPERTIES

Chemical formula	LiB ₃ O ₅		
Crystal structure	orthorhomb	ic, mm2	
Optical symmetry	Negative bi	axial	
Space group	Pna2 ₁		
Density	2.47 g/cm3		
Mohs hardness	6		
Optical homogeneity	∂n = 10 ⁻⁶ cr	n-1	
Transparency region at "0" transmittance level	155 – 3200	nm	
Linear absorption coefficient at 1064 nm	< 0.01 % cr	n-1	
Refractive indices:	n _x	n _y	n _z
at 1064 nm	1.5656	1.5905	1.6055
at 532 nm	1.5785	1.6065	1.6212
at 355 nm	1.5971	1.6275	1.6430
Sellmeier equations (λ, μm)	$n_x^2 = 2.4542$	2 + 0.01125 / ($(\lambda^2 - 0.01135) - 0.01388 \lambda^2$
	n _y ² = 2.5390 4.3025	0 + 0.01277 / (5 × 10 ⁻⁵ λ ⁴ – 2.	(λ² – 0.01189) – 0.01849 λ² + 9131 × 10 ⁻⁵ λ ⁶
	n _z ² = 2.5868 4.5778	5 + 0.0131 / (λ 3 × 10 ⁻⁵ λ ⁴ – 3.	² – 0.01223) – 0.01862 λ ² + 2526 × 10 ⁻⁵ λ ⁶
Phase matching range Type 1 SHG	554 – 2600	nm	
Phase matching range Type 2 SHG	790 – 2150	nm	
NCPM SHG temperature dependence:			
Type 1 range 950 – 1300 nm	T1 = - 1893	.3λ ⁴ + 8886.6	λ ³ – 13019.8λ ² + 5401.5λ + 863.9
Type 1 range 1300 – 1800 nm	T2 = 878.1/	\ ⁴ - 6954.5λ ³ +	+ 20734.2λ ² – 26378λ + 12020
Type 2 range 1100 – 1500 nm	T3 = - 2163	0.6λ ⁴ + 11225	$1\lambda^3 - 220460\lambda^2 + 194153\lambda - 64614.5$
PM SHG at 1064 nm Type 1 temperature 149 °C			
NCPM SHG at 1319 nm Type 2 temperature	43 °C		
Walk-off angle	7 mrad (Typ	be 1 SHG 106	i4 nm)
Thermal acceptance	6.4 K×cm (Type 1 SHG 1	064 nm)
Angular acceptance	6.5 mrad×c	m (Type 1 SH	IG 1064 nm)
	248 mrad×o	cm (Type 1 NC	CPM SHG 1064 nm)
Nonlinearity coefficients	d ₃₁ = - (0.9 d ₃₃ = (0.05±	8±0.09) pm/V; 0.006) pm/V	; d ₃₂ = (1.05±0.09) pm/V;
Effective nonlinearity:			
XY plane	$d_{ooe} = d_{32}$ c	osφ	
YZ plane	d _{oeo} = d _{eoo} =	= d ₃₁ cosθ	
Expansion coefficients	α _x = 10.8 ×	10 ⁻⁵ K ⁻¹ ; α _v =	$= -8.8 \times 10^{-5} \text{ K}^{-1}; \alpha_z = 3.4 \times 10^{-5} \text{ K}^{-1}$
Laser induced damage threshold (LIDT)	>5 J/cm ² (>	500 MW/cm ²)	, 1064 nm, 10 ns, 10 Hz

Please contact EKSMA OPTICS for further information or nonstandard specifications.

RELATED PRODUCTS

LBO crystals for SHG of Yb:KGW/KYW laser frequency conversion. See page 5.38

149 °C temperature is required to achieve Non-Critical Phase Matching (NCPM) in LBO at type 1 SHG of 1064 nm application. **TC2 oven** is specially designed for this purpose (see technical specifications, p. 2.27).

Heatpoint is a compact round oven designed for heating $(30 - 80 \degree C)$ of humidity sensitive nonlinear crystals. It is used to prevent moisture condensation on crystal faces or for thermostabilization of the crystals.

As a result of its excellent properties BBO

has a number of advantages for different

· harmonic generations (up to fifth) of

 frequency doubling and tripling of ultrashort pulse Ti:Sapphire and Dye

 optical parametric oscillators (OPO) at both Type 1(ooe) and Type 2 (eoe)

frequency doubling of Argon ion and

electro-optic crystal for Pockels cells

measurements by autocorrelation.

Copper vapour laser radiation

BBO

BETA BARIUM BORATE

applications:

lasers

Nd doped lasers

phase-matching

ultrashot pulse duration

- Wide transparency region
- Broad phase-matching range
- Large nonlinear coefficient
- High damage threshold
- Wide thermal acceptance bandwidth
- High optical homogenity

WE OFFER:

- Crystal aperture up to 22 × 22 mm
- Crystal length up to 25 mm
- Thin crystals down to 5 µm thickness
- AR, BBAR, P-coating
- BBO with gold electrodes for e/o • applications
- Different mounting and repolishing services

STANDARD SPECIFICATIONS

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10-5 scratch & dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture

2.

STANDARD CRYSTALS LIST

Catalogue number	Size, mm	θ , deg	φ, deg	Coating	Application	Price, EUR
BBO-601H	6×6×0.1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	505
BBO-602H	6×6×0.2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	505
BBO-603H	6×6×0.5	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	440
BBO-604H	6×6×1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	390
BBO-605H	6×6×2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	360
BBO-609H	6×6×0.1	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	505
BBO-610H	6×6×0.2	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	505
BBO-611H	6×6×0.5	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	440
BBO-612H	6×6×1	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	390
BBO-1001H	10×10×0.1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	800
BBO-1002H	10×10×0.2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	790
BBO-1003H	10×10×0.5	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	760
BBO-1004H	10×10×1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	765
BBO-1005H	10×10×2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	830
BBO-1009H	10×10×0.1	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	800
BBO-1010H	10×10×0.2	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	790
BBO-1011H	10×10×0.5	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	760
BBO-1012H	10×10×1	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	785

Wide selection of non-standard size and cut angle BBO crystals is available at www.eksmaoptics.com

Please contact EKSMA OPTICS for special OEM and large volume pricing.

CRYSTAL OVENS

POSITIONERS & HOLDERS

NONLINEAR CRYSTALS

LASER CRYSTALS

TERAHERTZ CRYSTALS

RAMAN CRYSTALS

PHYSICAL AND OPTICAL PROPERTIES

Chemical formula	BaB ₂ O ₄
Crystal structure	trigonal, 3m
Optical symmetry	Negative Uniaxial (n _o >n _e)
Space group	R3c
Density	3.85 g/cm ³
Mohs hardness	5
Optical homogeneity	∂n = 10 ⁻⁶ cm ⁻¹
Transparency region at "0" transmittance level	189 – 3500 nm
Linear absorption coefficient at 1064 nm	< 0.1% cm ⁻¹
Refractive indices	n _o n _e
at 1064 nm	1.6551 1.5426
at 532 nm	1.6750 1.5555
at 355 nm	1.7055 1.5775
at 266 nm	1.7571 1.6139
at 213 nm	1.8465 1.6742
Sellmeier equations (λ, μm)	n_o^2 = 2.7366122 + 0.0185720 / (λ^2 – 0.0178746) - 0.0143756 λ^2
	n_e^2 = 2.3698703 + 0.0128445 / (λ^2 – 0.0153064) - 0.0029129 λ^2
Phase matching range Type 1 SHG	410 – 3300 nm
Phase matching range Type 2 SHG	530 – 3300 nm
Walk-off angle	55.9 mrad (Type 1 SHG 1064 nm)
Angular acceptance	1.2 mrad × cm (Type 1 SHG 1064 nm)
Thermal acceptance	70 K × cm (Type 1 SHG 1064 nm)
Nonlinearity coefficients	$d_{22} = \pm 2.2 \text{ pm/V}; d_{15} = d_{31} = \pm 0.08 \text{ pm/V}$
Effective nonlinearity expressions	$d_{ooe} = d_{31} \sin\theta - d_{22} \cos\theta \sin 3\phi$
	$d_{eoe} = d_{oee} = d_{22} \cos^2\theta \cos 3\phi$
Thermal expansion coefficient	$\alpha_{11} = 4 \times 10^{-6} \text{ K}^{-1}; \ \alpha_{33} = 36 \times 10^{-6} \text{ K}^{-1}$
Damage threshold for TEM ₀₀	> 0.5 GW/cm² at 1064 nm, 10 ns ~ 50 GW/cm² at 1064 nm, 1 ps > 200 GW/cm² at 800 nm, 100 fs, 50 Hz

P-protective coating. It's a single or two layers antireflection coating made at specified wavelength range. Typical reflection values are R≈2% in the mid range, R<4% at the edges. P coating is recommended for ultrashort pulses applications and features low dispersion.

Typical P-coating for BBO SHG@800 nm application

RELATED PRODUCTS

Thin BBO crystals for SHG and THG of Ti:Sapphire laser wavelength See page 5.31

BBO crystals for SHG of Yb:KGW/KYW laser frequency conversion See page 5.38

Typical coating for BBO THG@800 nm or SHG@532 nm applications (output face P@266 nm)

Typical coating for BBO SHG@532 nm application (input face P@532 nm)

HOUSING ACCESSORIES

Ring Holders for Nonlinear Crystals See page 2.25

Positioning Mount 840-0199 for Nonlinear Crystal Housing Accepts crystals with aperture up to 12x12 mm and thichness up to 3 mm. See page 2.26

POSITIONERS & HOLDERS

KDP • DKDP

- Laser frequency conversion harmonic generation for high pulse energy, low repetition (<100 Hz) rate lasers
- Electro-optical modulation
 O switching erustal for Books
- Q-switching crystal for Pockels cells

POTASSIUM DIDEUTERIUM PHOSPHATE

ELECTRO-OPTICAL/Q-SWITCHING APPLICATION

- EKSMA OPTICS offers highly deuterated D>96% electro-optic crystal – DKDP for Q-switching application;
- Standard dimensions of electrooptic DKDP crystals for Q-switching are cylinders dia 9×20 mm and dia 12×24 mm however manufacturing of custom size and rectangular shape crystals is available;
- Gold evaporated or silver paste electrodes are available;
- Dielectric thin film AR coatings for specified laser wavelengths are available;
- Typical quarter wave voltage 3.4 kV at 1064 nm;
- Typical contrast ratio between crossed polarizers better than 1:2000;
- Damage threshold of AR coated DKDP surface >5 J/cm² at 1064 nm, 10 ns pulses.

FREQUENCY CONVERSION APPLICATIONS

- DKDP crystals are used for second harmonic generation of high pulse energy low repetition rate (<100 Hz) Q-switched and mode-locked Nd:YAG lasers. Cut angle of crystal for operation at room temperature is 36.6° for Type 1 phase matching and 53.7° deg for Type 2 phase matching.
- DKDP crystals are used for third harmonic generation of high pulse energy Q-switched and mode-locked Nd:YAG lasers via sum frequency generation. Cut angle of crystal for operation at room temperature is 59.3° for Type 2 phase matching.

STANDARD SPECIFICATIONS

latness	λ/6 at 633 nm
Parallelism	< 20 arcsec
Surface quality	20-10 scratch & dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture

- Type 1 DKDP crystals with non-critical cut angle θ=90° are used for fourth harmonic generation (532 nm → 266 nm) of high pulse energy Q-switched and mode-locked Nd:YAG lasers. Crystal must be heated at ~50 °C temperature to match NCPM conditions.
- Type 1 KDP crystals with close to non-critical cut angle θ=76.5° are used for fourth harmonic generation (532 nm → 266 nm) of high pulse energy Q-switched and mode-locked Nd:YAG lasers. KDP has lower absorption at UV wavelengths comparing to DKDP.
- KDP thin crystals are used for second harmonic generation of Ti:Sapphire laser radiation or pulse duration measurement in single shot autocorrelators. KDP possesses ~2.4 times larger spectral acceptance and correspondingly smaller group velocity mismatch comparing to BBO crystal for SHG of 800 nm, what sometime is very critical parameter for femtosecond wide spectrum pulses.
- KDP crystals can be supplied by EKS-MA OPTICS of aperture up to Ø80 mm. Actually KDP remains the only solution for harmonic generation of very high intensity femtosecond Ti:Sapphire lasers featuring sub-tera Watt or tera Watt peak power pulses in large >30 mm diameter beams.

STANDARD CRYSTALS LIST

Code	Size, mm	θ, deg	φ, deg	Coating	Application	Price, EUR
DKDP-401	15x15x13	36.5	45	AR/AR @ 1064+532 nm	SHG @ 1064 nm, Type 1	485
DKDP-402	15x15x13	53.5	0	AR/AR @ 1064+532 nm	SHG @ 1064 nm, Type 2	485
DKDP-403	12x12x20	59.3	0	AR/AR @ 1064+532 / 355 nm	THG @ 1064 nm, Type 2	475
DKDP-404	12x12x20	53.5	0	AR/AR @ 1064 / 1064+532 nm	SHG @ 1064 nm	475
DKDP-405	15x15x20	53.5	0	AR/AR @ 1064 / 1064+532 nm	SHG @ 1064 nm	579
DKDP-406	15x15x20	59.3	0	AR/AR @ 1064+532 / 355 nm	THG @ 1064 nm	579
KDP-401	12x12x5	76.5	45	AR/AR @ 532/266 nm	SHG @ 532 nm	405
KDP-402	15x15x7	76.5	45	AR/AR @ 532/266 nm	SHG @ 532 nm	480

Wide selection of non-standard size and cut angle DKDP crystals is available at www.eksmaoptics.com

Please contact EKSMA OPTICS for special OEM and large volume pricing. -ASER CRYSTALS

TERAHERTZ CRYSTALS

RAMAN CRYSTALS

OSITIONERS & HOLDERS

CRYSTAL OVENS

Cruetala		KDD	סאס
Crystals	_	KUP	UKUP
Chemical formula		KH ₂ PO ₄	KD ₂ PO ₄
Symmetry		42 m	42 m
Hygroscopicity		high	high
Density, g/cm ³		2.332	2.355
Thermal conductivity, W/cm×K		k ₁₁ = 1.9×10 ⁻²	k ₁₁ = 1.9×10 ⁻² k ₃₃ = 2.1×10 ⁻²
Thermal expansion coefficients, K ⁻¹		a ₁₁ = 2.5×10 ⁻⁵ a ₃₃ = 4.4×10 ⁻⁵	a ₁₁ = 1.9×10⁻⁵ a ₃₃ = 4.4×10⁻⁵
Transmission range, µm		0.18-1.5	0.2-2.0
Residual absorption, cm ⁻¹ (at 1.06 µm)		0.04	0.005
Measured refractive index (at 1.06 $\mu\text{m})$		n _o = 1.4938 n _e = 1.4599	n _o = 1.4931 n _e = 1.4582
Sellmeier coeff., λ – wavelength in μ m		$n^2 = A + \frac{B \lambda^2}{\lambda^2 - C}$	$\frac{D}{D} + \frac{D}{\lambda^2 - E}$
А	n _o n _e	2.259276 2.132668	2.2409 2.1260
В	n _o n _e	13.00522 3.2279924	2.2470 0.7844
С	n _o n _e	400 400	126.9205 123.4032
D	n _o n _e	0.01008956 0.008637494	0.0097 0.0086
_	no	0.012942625	0.0156
E	n _e	0.012281043	0.0120
Nonlinear coeff. d ₃₆ , pm/V (at 1.06 µm)		0.43	0.40
Effective nonlinear coefficient Type 1 Type 2		$d_{ooe} = d_{36} \times si$ $d_{eoe} = d_{36} \times si$	nθ × sin2φ nθ × cos2φ
Laser damage threshold, GW/cm² at 1.06 μm		10 ps – 100 1 ns – 10 15 ns – 14.4	250 ps – 6 10 ns – 0.5

PHASE MATCHING ANGLES AND BANDWIDTHS FOR SHG OF 1064 nm

Crystal	ĸ	DP	DK	DP
Type of phase matching	Type 1 ooe	Type 2 eoe	Type 1 ooe	Type 2 eoe
Cut angle θ, deg	41.2	59.1	36.6	53.7
Acceptances for crystal of 1 cm length (FWHM):				
$\Delta \theta$ (angular), mrad	1.1	2.2	1.2	2.3
ΔT thermal, K	10	11.8	32.5	29.4
$\Delta\lambda$ spectral, nm	21	4.5	6.6	4.2
Walk off, mrad	28	25	25	25

ADP, DADP, RDP, CDA and DCDA crystals are available upon request!

RELATED PRODUCTS

Nonlinear Crystal Oven CH8 See page 2.29

Nonlinear Crystal Oven CH9

See page 2.30

DKDP and KDP crystals are highly hygroscopic. CH8 and CH9 ovens help to protect hygroscopic crystals from moisture. The raised working temperature (40-60 °C) allows to extend crystal lifetime and to keep it thermostable. This helps to stabilise SHG efficiency.

POSITIONERS & HOLDERS

2.7

KTP

POTASSIUM TITANYL PHOSPHATE

- Excellent nonlinear, electro-optical and acousto-optical properties
- High nonlinear coefficient
- Wide transparency range
- Broad angular acceptance
- Broad thermal acceptance

WE OFFER:

- Crystal size up to 10×10×20 mm
- Singleband and dualband AR and BBAR coatings
- Standard and customised mounts and housings
- Free technical consulting.

KTP is a standard crystal mostly used in extracavity configuration when a single pass through the crystal is required.

KTP crystals are optimised for SHG intracavity configuration in low peak power CW lasers. Due to the large number of passes through the crystal, low insertion losses and high homogeneity are essential for conversion efficiency. The special highest quality material selected by SHG efficiency mapping of each crystal, fine surface polishing and dual band AR coatings with very low losses allow EKSMA OPTICS to produce KTP crystals suitable for intracavity SHG application.

lea

angle,

tching ar

60

50

4.0

E 3.0

20

1.0

0.0

30 40

1.0

15

2.0

Fig. 2. Type 2 SHG in x-z plane

50 60

Fig. 4. OPO tuning curve in x-z plane

Phase

Fundamental wavelength, µm

Pump 532 nm

2.5

70

natching angle, deg

80 90

3.0

3.5

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10-5 scratch & dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture

Phase-matching angle, deg Fig. 3. OPO tuning curve in x-y plane

Fig. 1 represents Type 2 SHG tuning curve of KTP in x-y plane. In x-y plane the slope $\partial(\Delta k)/\partial \theta$ is small. This corresponds to quasi-angular noncritical phase-matching, which ensures the double advantage of a large acceptance angle and a small walk off. Otherwise in x-z plane the slope $\partial(\Delta k)/\partial \lambda$ is almost zero for wavelengths in the range 1.5–2.5 µm and this corresponds to quasi-wavelength noncritical phase-matching, which ensures a large spectral

acceptance (see Fig. 2). Wavelength noncritical phase-matching is highly desirable for frequency conversion of short pulses. As a lasing material for OPG, OPA or OPO, KTP can most usefully be pumped by Nd lasers and their second harmonic or any other source with intermediate wavelength, such as a dye laser (near 600 nm). Fig. 3 and Fig. 4 show the phasematching angles for OPO/OPA pumped at 532 nm in x-y and x-z plane respectively.

STANDARD CRYSTALS LIST

Code	Size, mm	θ, deg	φ , deg	Coating	Application	Price, EUR
KTP-401	3x3x5	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	76
KTP-402	3x3x10	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	109
KTP-403	4x4x6	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	118
KTP-404	7x7x9	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	529

Please contact EKSMA OPTICS for special OEM and large volume pricing.

NONLINEAR CRYSTALS

Crystal structure	orthorhombic
Point group	mm2
Space group	Pna2 ₁
Lattice constants, Å	a = 6.404, b = 10.616, c = 12.814, z = 8
Density, g/cm ³	3.01
Melting point, °C	1172
Transition temperature, °C	936
Mohs hardness	5
Thermal expansion coefficients, °C-1	a _x = 11×10 ⁻⁶ , a _y = 9×10 ⁻⁶ , a _z = 0.6×10 ⁻⁶
Thermal conductivity, W/cm°C	13
Not hydroscopic	

OPTICAL PROPERTIES

Transparency	350–4400 nm	
Refractive indices	at 1064 nm	at 532 nm
	n _x = 1.7404	n _x = 1.7797
	n _y = 1.7479	n _y = 1.7897
	n _z = 1.8296	n _z = 1.8877
Thermooptic coefficients in 0.4 – 1.0 µm range	$\partial n_x / \partial T = 1.1 \times 10^{-5} (K)^{-1}$	
	$\partial n_y / \partial T = 1.3 \times 10^{-5} (K)^{-1}$	
	$\partial n_z / \partial T = 1.6 \times 10^{-5} (K)^{-1}$	
Wavelength dispersion of refractive indices	$n_x^2 = 3.0067 + 0.0395 / (\lambda^2 - 0.04)$	251)–0.01247×λ ²
	$n_y^2 = 3.0319 + 0.04152 / (\lambda^2 - 0.02)$	4586)–0.01337×λ²
	$n_z^2 = 3.3134 + 0.05694 / (\lambda^2 - 0.025694)$	05941)–0.016713×λ²

NONLINEAR PROPERTIES

Phase matching range for:	
Type 2 SHG in x-y plane	0.99÷1.08 μm
Type 2 SHG in x-z plane	1.1÷3.4 μm
For Type 2, SHG @ 1064 nm, cut angle θ =90°, ϕ =23.	5°
Walk-off	4 mrad
Angular acceptances	$\Delta \theta$ = 55 mrad × cm
	$\Delta \phi$ = 10 mrad × cm
Thermal acceptance	$\Delta T = 22 \text{ K} \times \text{cm}$
Spectral acceptance	$\Delta v = 0.56 \text{ nm} \times \text{cm}$
Up to 80% extracavity SHG efficiency	
Effective nonlinearity	
x-y plane	$d_{eoe} = d_{oee} = d_{15} \sin^2 \varphi + d_{24} \cos^2 \varphi$
x-z plane	$d_{oeo} = d_{eoo} = d_{24} \sin \theta$
	d ₃₁ = ± 1.95 pm/V d ₃₂ =± 3.9 pm/V
	d_{33} = ± 15.3 pm/V d_{24} = d_{32} d_{15} = d_{31}
Damage threshold	>500 MW/cm ² for pulses λ =1064 nm, r=10 ns, 10 Hz, TEM ₆₀

RELATED PRODUCTS

KTA

POTASSIUM TITANYLE ARSENATE

- Significantly reduced absorption in band range of 2.0 – 5.0 µm
- Broad angular bandwidth
- Broad temperature bandwidth
- Low dielectric constants

WE OFFER:

mid IR ranges

- KTA crystals size up to 15×15×30 mm
- AR and BBAR coatings for VIS-IR and

Potassium titanyle arsenate (KTiOAsO₄), or KTA, is a nonlinear optical crystal for Optical Parametric Oscillation (OPO) application. It has good nonlinear optical and electro-optical properties, e.g. significantly reduced absorption in band range of 2.0-5.0 µm, broad angular and temperature bandwidth, low dielectric constants.

PRIMARY APPLICATIONS

- OPO for mid IR generation up to 4 µm
- Sum and Difference Frequency Generation in mid IR range
- Electro-optical modulation and Q-switching

STANDARD CRYSTALS LIST

SPECIFICATIONS

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10-5 scratch & dig (MIL-PRF-13830B)
Perpendicularity	<15 arcmin
Angle tolerance	<± 0.2°
Aperture tolerance	± 0.1 mm
Clear aperture	> 90% central area
Transmitting wavefront distortion	less than λ/8 @ 633 nm

Code	Size, mm	θ, deg	φ , deg	Coating	Application	Price, EUR
KTA-503	5×5×20	45	0	AR/AR @ 1064+(1500-4500) nm	Nanosecond OPO @ 1064 nm	1985
KTA-504	5×5×10	45	0	AR/AR @ 1064+(1500-4500) nm	Picosecond OPG/A @ 1064 nm	1060
KTA-601H	6×6×1	47	0	AR/AR @ 1.2-2.4/2.6-5.0 µm	DFG @ 1.2-2.4 µm	675
KTA-602H	6×6×3	46	0	AR/AR @ 1030+(1700-5000) nm	OPO @ 1030 nm	590

Please contact EKSMA OPTICS for special OEM and large volume pricing.

PHYSICAL PROPERTIES

Crystal structure	orthorhombic
Point group	mm2
Space group	Pna21
Lattice constants, Å	a = 13.125, b = 6.5716, c = 10.786
Density, g/cm ³	3.45
Melting point, °C	1130
Mohs hardness	5
Thermal conductivity, W/m×K	k ₁ =1.8, k ₂ =1.9, k ₃ =2.1
Not hygroscopic	

NONLINEAR & OPTICAL PROPERTIES

Transparency	350 – 5300 nm
	$n_x^2 = 1.90713 + 1.23522 \times \lambda^2 / (\lambda^2 - 0.196922^2) - 0.01025 \times \lambda^2$
vvavelength dispersion	$n_y^2 = 2.15912 + 1.00099 \times \lambda^2 / (\lambda^2 - 0.218442^2) - 0.01096 \times \lambda^2$
of renactive indices	$n_z^2 = 2.14768 + 1.29559 \times \lambda^2 / (\lambda^2 - 0.227192^2) - 0.01436 \times \lambda^2$
Electro optical constants	r ₃₃ = 37.5 pm/V, r ₂₃ = 15.4 pm/V, r ₁₃ = 11.5 pm/V
Effective nonlinearity	
x-y plane	$d_{eoe} = d_{oee} = d_{15} \sin^2 \varphi + d_{24} \cos^2 \varphi$
x-z plane	$d_{oeo} = d_{eoo} = d_{24} \sin \theta$
	d ₃₁ =2.3 pm/V, d ₃₂ =3.66 pm/V, d ₃₃ =15.5 pm/V
	d ₂₄ = 3.64 pm/V, d ₁₅ = 2.3 pm/V
Damage threshold	>500 MW/cm² for pulses λ =1064 nm, τ =10 ns, 10 Hz, TEM ₀₀

LiNbO₃

LITHIUM NIOBATE

Lithium Niobate (LiNbO $_3$) nonlinear optical crystals are well suited for a wide range of applications:

- Electro-optical modulation
- Q-switching
- Laser frequency conversion of wavelengths >1 µm

SPECIFICATIONS

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10-5 scratch & dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	< 30 arcmin
Clear aperture	90% of full aperture

STANDARD CRYSTALS LIST

Code	Size, mm	Orientation	Coating	Price, EUR
LNO-602	6×6×25	z-cut	AR/AR @ 1064 nm	550
LNO-901	9×x9×25	z-cut	AR/AR @ 1064 nm	620

PHYSICAL AND OPTICAL PROPERTIES

Chemical formula	LiNbO3
Crystal structure	trigonal
Space group	R3C
Density	4.64 g/cm ³
Mohs hardness	5
Optical homogenity	~ 5 × 10 ⁻⁵ / cm
Transparency range	420 – 5200 nm
Absorption coefficient	~ 0.1 % / cm @ 1064 nm
Refractive indices at 1064 nm	ne = 2.146, n₀ = 2.220 @ 1300 nm ne = 2.156, n₀ = 2.232 @ 1064 nm ne = 2.203, n₀ = 2.286 @ 632.8 nm
Sellmeier equations (λ , μ m)	$\begin{array}{l} n_{o}{}^{2}=4.9048+0.11768/(\lambda^{2}-0.04750)-0.027169\lambda^{2}\\ n_{e}{}^{2}=4.5820+0.099169/(\lambda^{2}-0.04443)-0.021950\lambda^{2} \end{array}$
Thermal expansion coefficient @ 25 °C	//a, 2.0 × 10 ⁻⁶ / K //c, 16.7 × 10 ⁻⁶ / K
Thermal conductivity	~ 5 W/m/K @ 25 °C
Thermal optical coefficient	dn₀/dT = -0.874 × 10 ⁻⁶ / K at 1.4 µm dn₀/dT = 39.073 × 10 ⁻⁶ / K at 1.4 µm

NONLINEAR CRYSTALS

LASER CRYSTALS

TERAHERTZ CRYSTALS

RAMAN CRYSTALS

POSITIONERS & HOLDERS

LilO₃

High nonlinear optical

• Wide transparency range

Low damage threshold – not recommended for high power

coefficients

applications

LITHIUM IODATE

APPLICATIONS

- Harmonic generators
- Thin LilO₃ for autocorrelation measurements

SPECIFICATIONS

Flatness	λ/6 at 633 nm
Parallelism	< 30 arcsec
Surface quality	20-10 scratch & dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance ($\Delta \theta \& \Delta \phi$)	< 30 arcmin
Clear aperture	90% of full aperture

LilO3 Second harmonic generation phasematching

PHYSICAL AND OPTICAL PROPERTIES

Crystal structure		hexagonal		
Point group		6		
Density, g/cm ³		4.487		
Mohs hardness		3.5-4.0		
Transparency range,	nm	280–4000		
Absorption at 1064 nr	n, cm ⁻¹	< 0.05		
Refractive indices	at 1064 nm	n _o = 1.8571, n _e = 1.7165		
	at 800 nm	n _o = 1.8676, n _e = 1.7245		
	at 532 nm	n _o = 1.8982, n _e = 1.7480		
Phase matching range	e for Type 1 SHG, nm	570-4000		
Acceptances for Type	1 SHG at 1064 nm			
	Angular, mrad×cm	0.77		
	Spectral, cm ⁻¹ ×cm	12.74		
Walk-off for Type 1 SI	HG at 1064 nm, mrad	74.30		
Nonlinear optical coef	ficient d ₁₅ , pm/V	2.2 (at 1064 nm)		
Effective nonlinearity		$d_{ooe} = d_{15} \sin \theta$		
Damage threshold, M	W/cm ²	> 100 for TEM ₀₀ , 1064 nm, 10 ns, 10 Hz		
Wavelength dispersio	n of refractive indices ($\lambda - in \mu m$)			
n _o ² = 2.08364	$48 + \frac{1.332068 \lambda^2}{\lambda^2 - 0.035306} - 0.008525 \lambda^2$	$n_e^2 = 1.673463 + \frac{1.245229\lambda^2}{\lambda^2 - 0.028224} - 0.003641\lambda^2$		

HOUSING ACCESSORIES

Ring Holders for Nonlinear Crystals See page 2.25

Positioning Mount 840-0199 for Nonlinear **Crystal Housing** See page 2.26

CRYSTAL OVENS

ZnGeP₂ • AgGaSe₂ AgGaS₂ • GaSe

Optical nonlinear crystals ZnGeP₂, AgGaSe2, AgGaS2, GaSe have gained tremendous interest for middle and deep infrared applications due to their unique features. The crystals have large effective optical nonlinearity, wide spectral and angular acceptances, broad transparency range, non-critical requirements for temperature stabilization and vibration control, are well mechanically processed (except GaSe).

OPO 1.55 µm pump OPO 2.1 µm pump Type 1 SHG

80

50

Type 1 OPO and SHG tuning curves in

Angle of Phase Matching, deg

70

50

INFRARED NONLINEAR CRYSTALS

ZnGeP₂

ZnGeP₂ (ZGP) crystal has transmission band edges at 0.74 and 12 µm. However it's useful transmission range is from 1.9 to 8.6 µm and from 9.6 to 10.2 µm. ZGP crystal has the largest nonlinear optical coefficient and relatively high laser damage threshold. The crystal is successfully used in diverse applications:

- up-conversion of CO₂ and CO laser radiation to near IR range via harmonics generation and mixing processes;
- efficient SHG of pulsed CO, CO₂ and chemical DF-laser;
- efficient down conversion of Holmium, Thulium and Erbium and laser wavelengths to mid infrared wavelength ranges by OPO process.

Crystals with high damage threshold BBAR coatings and the lowest absorption coefficient $\alpha < 0.05$ cm⁻¹ at pump wavelengths 2.05 - 2.1 µm "o"- polarisation are available for OPO applications.

Typical absorption coefficient is <0.03 cm⁻¹ at 2.5 - 8.2 µm range.

Type 1 OPO and SHG tuning curves in ZnGeP₂

Transmission spectra of 15 mm long AR coated ZnGeP2 crystal for OPO @ 2.1 µm

TYPE 1 ZnGeP₂ CRYSTALS for OPO at 3.5-5 µm range pumped at ~2.1 µm

Catalogue number	Size, mm	θ, deg	φ , deg	Coating	Application
ZGP-401	7×5×15	54	0	AR @ 2.1 µm + BBAR @ 3.5-5 µm	$OPO@2.1 \rightarrow 3.5\text{-}5 \ \mu\text{m}$
ZGP-402	7×5×20	54	0	AR @ 2.1 µm + BBAR @ 3.5-5 µm	$OPO@2.1 \rightarrow 3.5\text{-}5 \ \mu\text{m}$
ZGP-403	7×5×25	54	0	AR @ 2.1 µm + BBAR @ 3.5-5 µm	$OPO@2.1 \rightarrow 3.5\text{-}5 \ \mu\text{m}$

AgGaSe₂

18

15

9

6

3

35 40

AgGaSe₂

Ē 12

Wavelength

AgGaSe₂ has band edges at 0.73 and 18 µm. Its useful transmission range of 0.9-16 µm and wide phase matching capability provide excellent potential for OPO applications when pumped by a variety of currently available lasers. Tuning from

80 60 % Transmission 40 20 90 2000 6000 10000 18000 14000 Wavelength, nm Transmission spectra of 18 mm long uncoated

AgGaSe₂ crystal

2.5–12 µm has been obtained when pumping by Ho:YLF laser at 2.05 µm; as well as NCPM operation from 1.9-5.5 µm when pumping at 1.4-1.55 µm. Efficient SHG of pulsed CO₂ laser has been demonstrated.

AgGaSe₂ crystal

LASER CRYSTALS

NONLINEAR CRYSTALS

AgGaS₂

AgGaS₂ is transparent from 0.53 to 12 μ m. Although nonlinear optical coefficient is the lowest among the above mentioned infrared crystals, its high short wavelength transparency edging at 550 nm is used in OPOs pumped by Nd:YAG laser; in numerous difference frequency mixing experiments using diode, Ti:Sapphire, Nd:YAG and IR dye lasers covering 3–12 μ m range; direct infrared countermeasure systems, and SHG of CO₂ laser.

Transmission spectra of 14 mm long AR coated and uncoated AgGaS $_2$ crystal used for OPO pumped by Nd:YAG laser

LIST OF STANDARD AgGaS₂ CRYSTALS

Code	Size, mm	θ , deg	φ , deg	Coating	Application	Price, EUR
AGS-401H	5×5×1	39	45	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 μm -> 2.4-11 μm	835
AGS-402H	6×6×2	50	0	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 μm -> 2.4-11 μm	1345
AGS-403H	5×5×0.4	34	45	BBAR/BBAR @ 3-6 / 1.5-3 μm	SHG @ 3-6 µm, Type 1	995
AGS-404H	5×5×0.4	39	45	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 μm -> 2.4-11 μm	995
AGS-801H	8×8×0.4	39	45	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 µm, Type 1	2340
AGS-802H	8×8×1	39	45	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	DFG @ 1.2-2.4 µm, Type 1	2140

Crystals are mounted into open ring holders (see page 2.25).

GaSe

GaSe has band edges at 0.65 and 18 µm. GaSe has been successfully used for efficient SHG of CO₂ laser, for SHG of pulsed CO, CO₂ and chemical DF-laser (λ = 2.36 µm) radiation; up conversion of CO and CO₂ laser radiation into the visible range; infrared pulses generation via difference frequency mixing of Neodymium and infrared dye laser or (F-)-centre laser pulses; OPG light generation within 3.5–18 μ m; efficient TeraHertz generation in 100–1600 μ m range. It is impossible to cut crystals for certain phase matching angles because of material structure (cleave along (001) plane) limiting areas of applications.

Transmission spectra of 17 mm long uncoated GaSe crystal

RELATED PRODUCTS

Type 1 and Type 2 SHG tuning curves in GaSe

GaSe, Z-CUT

Catalogue number	Clear aperture, mm	Thickness, µm	Holder, mm	Price, EUR
GaSe-10H1	Ø7	10	Ø25.4	1950
GaSe-30H1	Ø7	30	Ø25.4	1625
GaSe-100H1	Ø7	100	Ø25.4	1475
GaSe-500H1	Ø7	500	Ø25.4	1460
GaSe-1000H1	Ø7	1000	Ø25.4	1635
GaSe-2000H1	Ø7	2000	Ø25.4	1810

Please note that from now all standard GaSe crystals are provided mounted into Ø25.4 mm ring holders. Crystals could be mounted into Ø40 mm holders under your request. RAMAN CRYSTALS

PHYSICAL PROPERTIES

Crystal		ZnGeP ₂	AgGaSe ₂	AgGaS ₂	GaSe
Crystal Symmetry		Tetragonal	Tetragonal	Tetragonal	Hexagonal
Point Group		42m	42m	42m	62m
Lattice Constants, Å	a c	5.465 10.771	5.9901 10.8823	5.757 10.305	3.742 15.918
Density, g/cm ³		4.175	5.71	4.56	5.03

OPTICAL PROPERTIES

Crystal		ZnGeP ₂	AgGaSe ₂	AgGaS₂	GaSe
Optical transmission, µm		0.74–12	0.73–18	0.53–12	0.65–18
Indices of Refraction at					
1.06 µm	n _o n _e	3.2324 3.2786	2.7005 2.6759	2.4508 2.3966	2.9082 2.5676
5.3 µm	n _o n _e	3.1141 3.1524	2.6140 2.5823	2.3954 2.3421	2.8340 2.4599
10.6 µm	n _o n _e	3.0725 3.1119	2.5915 2.5585	2.3466 2.2924	2.8158 2.4392
Absorption Coefficient, cm-1	¹ at				
1.06 µm		3.0	<0.02	<0.09	0.25
2.5 µm		0.03	<0.01	0.01	0.05
5.0 µm		0.02	<0.01	0.01	0.05
7.5 µm		0.02	-	0.02	0.05
10.0 µm		0.4	-	<0.6	0.05
11.0 µm		0.8	-	0.6	0.05

NONLINEAR OPTICAL PROPERTIES

Crystal	ZnGeP ₂	AgGaSe ₂	AgGaS ₂	GaSe
Laser damage threshold, MW/cm ²	60	25	10	28
at pulse duration, ns	100	50	20	150
at wavelength, μm	2.05	10.6	1.06	9.3
Nonlinearity, pm/V	111	43	31	63
Phase matching angle for Type 1 SHG at 10.6 µm, deg	76	55	67	14
Walk-off angle at 5.3 µm, deg	0.57	0.67	0.85	3.4

THERMAL PROPERTIES

Crystal		ZnGeP ₂	AgGaSe ₂	AgGaS ₂	GaSe
Melting point, °C		1298	851	998	1233
Thermal Expansion Coefficient, 10-6/°K	K				
	T	17.5 ^(a)	23.4 ^(c)	12.5	9.0
	T	9.1 ^(b)	18.0 ^(d)		
	11	1.59 ^(a)	-6.4 ^(c)	-13.2	8.25
	11	8.08 ^(b)	-16.0 ^(d)		

a) at 293–573 K, b) at 573–873 K, c) at 298–423 K, d) at 423–873 K

SELLMEIER EQUATIONS FOR CALCULATION OF INDICES OF REFRACTION

Crystal		Α	В	С	D	Е	F	Expression
7-0-0	n _o	8.0409	1.68625	0.40824	1.2880	611.05	-	$n^2 = A + D^2 / (\lambda^2 - C) + D^2 / (\lambda^2 - C)$
ZIIGeP ₂	n _e	8.0929	1.8649	0.41468	0.84052	452.05	-	$\Pi^{2} = A + BA^{2} / (A^{2} - C) + DA^{2} / (A^{2} - E)$
1-0-5-	n _o	6.8507	0.4297	0.15840	0.00125	-	-	$r^{2} = A + B / (\lambda^{2} - C) = D \lambda^{2}$
AgGa5e ₂	n _e	6.6792	0.4598	0.21220	0.00126	-	-	$H^2 = A + B / (A^2 - C) - D A^2$
1-0-5	n _o	3.3970	2.3982	0.09311	2.1640	950.0	-	$r^{2} = A + B / (1 - C / \lambda^{2}) + D / (1 - E / \lambda^{2})$
AgGa5 ₂	n _e	3.5873	1.9533	0.11066	2.3391	1030.7	-	$II^{2} = A + B / (I - C / A^{2}) + D / (I - E / A^{2})$
6.050	n _o	7.443	0.405	0.0186	0.0061	3.1485	2194	$p^2 = A + D(\lambda^2 + C(\lambda^4 + D(\lambda^6 + C(\lambda^2 + C(\lambda^2)))))$
Gase	n _e	5.76	0.3879	-0.2288	0.1223	1.855	1780	$\Pi^{-} = A + B/A^{-} + C/A^{+} + D/A^{+} + E/(1 - F/A^{-})$

BBO • LBO • KDP LilO₃ • AgGaS₂ • GaSe

ULTRATHIN NONLINEAR CRYSTALS

- Thin crystals are used in different applications with femtosecond pulses: • Harmonic generation (SHG, SFG)
- Optical parametric generation and amplification (OPG, OPA)
- Difference frequency generation (DFG)
- Pulse width measurements by auto and cross correlation
- THz frequency generation (in GaSe crystal)

The propagation of a ultrashort optical pulses through the crystal results in a delay of the pulses because of Group Velocities Mismatch (GVM), a duration broadening because of Group Delay Dispersion (GDD) and a frequency chirp.

Unfortunately those effects forces to limit nonlinear crystal thickness in frequency generation schemes.

For two collinearly propagating pulses with different group velocities their quasistatic interaction length ($L_{\rm qs}$) is defined as distance over which they separate by a path equal to the one of the pulses duration (or to the desired pulse duration):

$L_{as} = \tau/GVM$;

where GVM is the group velocity mismatch and τ is the duration of the pulse. GVM calculations are presented for the most popular Type 1 phase matching applications for different crystals in *Table 2*.

Optimal BBO, LBO, KDP and LilO₃ crystal thicknesses which are limited by GVM for Type 1 SHG of 800 nm at different fundamental pulse duration are presented in the *Table 3*. Also effective coefficients and phase matching angles at room temperature (20 °C) are calculated. If longer crystal will be used this will cause second harmonic pulse broadening to the duration longer than fundamental pulse duration (or desired pulse duration).

Group delay dispersion (GDD) has an important impact on the propagation of pulses, because a pulse always has certain spectral width, so that dispersion will cause its frequency components to propagate with different velocities. In case of crystals where we have normal dispersion when refractive index decreases with increasing wavelength this leads to a lower group velocity of higher-frequency components, and thus to a positive chirp. The frequency dependence of the group velocity also has an influence on the pulse duration. If the pulse is initially unchirped, dispersion in a crystal will always increase its duration. This is called dispersive pulse broadening. For an originally unchirped Gaussian pulse with the duration τ_0 , the pulse duration is increased according to:

$$t = \tau_{0} \sqrt{1 + \left(\frac{4\ln 2 \cdot D \cdot L}{\tau_{0}^{2}}\right)^{2}}$$

L – thickness of the crystal in mm. D – second order group delay dispersion or dispersion parameter. *Table 1* gives D parameter for Type 1 phase matching SHG @ 800 nm for 800 nm pulse with "o" polarization and 400 nm pulse with "e" polarization in different crystals.

Table 2. Group velocity mismatch between shortest and longest wave pulse for Type 1 phase matching

Crystal	SFM	SFM	SHG	SHG	SHG	DFG	DFG
	800+266 nm	800+400 nm	800 nm	1030 nm	1064 nm	1.26-2.18→ 3 µm	1.48-1.74→ 10 µm
BBO	2074 fs/mm	737 fs/mm	194 fs/mm	94 fs/mm	85 fs/mm	-	-
LBO	-	448 fs/mm	123 fs/mm	51 fs/mm	44 fs/mm	-	-
KDP	-	370 fs/mm	77 fs/mm	1 fs/mm	-7 fs/mm	-	-
LiIO3	-	-	559 fs/mm	285 fs/mm	262 fs/mm	-	-
AgGaS ₂	_	_	-	_	_	170 fs/mm	-10 fs/mm

Table 3. Quasistatic interaction length for Type 1 SHG of 800 nm

Crystal	200 fs	100 fs	50 fs	20 fs	10 fs	Cut angles θ, φ	Coefficient deff
BBO	1.0 mm	0.5 mm	0.26 mm	0.1 mm	0.05 mm	29.2°, 90°	2.00 pm/V
LBO	1.6 mm	0.8 mm	0.4 mm	0.16 mm	0.08 mm	90°, 31.7°	0.75 pm/V
KDP	2.6 mm	1.3 mm	0.6 mm	0.26 mm	0.13 mm	44.9°, 45°	0.30 pm/V
LiIO ₃	0.4 mm	0.18 mm	0.01 mm	0.04 mm	0.018 mm	42.5°, 0°	3.59 pm/V

Table 1. D parameter for Type 1 SHG @ 800 nm orientation crystals for 800 nm (o-pol) and 400 nm (e-pol) pulses

Crystal	D at 800 nm	D at 400 nm
BBO	75 fsec ² /mm	196 fsec ² /mm
LBO	47 fsec ² /mm	128 fsec ² /mm
KDP	27 fsec ² /mm	107 fsec ² /mm
LilO ₃	196 fsec ² /mm	589 fsec ² /mm

We may calculate that spectrum limited initial 30 fsec Gaussian pulse at 400 nm will be broadened to 35 fsec pulse after passing 1 mm thickness BBO crystal. **VONLINEAR CRYSTALS**

LASER CRYSTALS

TERAHERTZ CRYSTALS

RAMAN CRYSTALS

Free standing crystals

The crystals of thickness down to 100 µm can be can be supplied as free standing crystals not attached to the support. However the ring mounts are highly recommended for safe handling of these thin crystals. The tolerance is $\pm 50 \ \mu m$ for crystals of thickness down to 300 $\ \mu m$ and $\pm 20 \ \mu m$ for crystals of thickness down to 100 $\ \mu m$.

GaSe crystal is supplied glued in to dia Ø40 mm ring holder only.

Crystal	Minimal aperture	Maximal aperture	Minimal thickness	
BBO	5×5 mm	20×20 mm	0.1 mm	
LBO	5×5 mm	30×30 mm	0.1 mm	
KDP	4×4 mm	100×100 mm	0.1 mm*	
LiIO ₃	4×4 mm	50×50 mm	0.1 mm*	
AgGaS ₂	5×5 mm	15×15 mm	0.1 mm	
GaSe	Ø5 mm	Ø7 mm	0.01 mm	

 * the thickness should be about 0.5 mm for max aperture KDP and LiIO_3

Optically contacted crystals

BBO crystals of thickness less than 100 μm or 12×12×2 mm. Of can be supplied optically contacted on UV are also available o Fused Silica substrates sizes 10×10×2 mm

or 12×12×2 mm. Other sizes of substrates are also available on request. The tolerances of BBO crystal thickness is +10/-5 µm.

Crystal	Minimal aperture	Maximal aperture	Minimal thickness
BBO	5×5 mm	10×10 mm	10±5 µm

EKSMA OPTICS provides various AR, BBAR and protective coatings for all free standing crystals and optically contacted crystals.

Ring mounts made from anodized aluminium and teflon are available for safe and convenient handling of ultrathin crystals.

STANDARD SPECIFICATIONS OF CRYSTALS

Crystals	BBO, LBO	KDP, LilO ₃ , AgGaS ₂	GaSe
Flatness	λ/6 at 633 nm	λ/4 at 633 nm	cleaved
Parallelism	< 10 arcsec	< 30 arcsec	perpendicularly
Angle tolerance	< 15 arcmin	< 30 arcmin	to optical axis.
Surface quality	10/5 scratch/dig	20/10 scratch/dig	Polish is not available

RELATED PRODUCTS

Other Ultrahin BBO crystals available. See pages 5.31; 5.38

Ring Holders for Nonlinear Crystals

See page 2.25

Positioning Mount 840-0199 for Nonlinear Crystal Housing See page 2.26

NONLINEAR CRYSTALS

Laser – Crystals

PROPERTIES OF 1.0% Nd:YAG AT 25°C

Formula Crystal structure

Density

Melting point

Nd:YAG

NEODYMIUM DOPED YTTRIUM ALUMINIUM GARNET

Cubic

4.55 g/cm3

1970 °C

Y_{2.97}Nd_{0.03}Al₅O₁₂

Nd:YAG crystal is the most popular lasing media for solid-state lasers. EKSMA OPTICS offers standard specifications high optical quality Nd:YAG rods with high damage threshold AR @ 1064 nm coatings.

Please contact EKSMA OPTICS for further information or non-standard specifications.

Mohs hardness 8.5 Transition ⁴F_{3/2}→⁴I_{11/2} @ 1064 nm Fluorescence lifetime 230 µs for 1064 nm 0.14 Wcm-1K-1 Thermal conductivity Specific heat 0.59 Jg⁻¹K⁻¹ 6.9 × 10⁻⁶ °C⁻¹ Thermal expansion ∂n/∂t 7.3 × 10⁻⁶ °C⁻¹ Young's modulus 3.17 × 104 Kg/mm-2 Poisson ratio 0.25 Thermal shock resistance 790 Wm⁻¹ Refractive index 1.818 @ 1064 nm

STANDARD RODS SIZES

Code	Diameter, mm	Length, mm	Doping, %	Wedge of the ends, deg	Price, EUR
E-Y-3-0.9-A/A	3	53	0.9	0/0	215
E-Y-3-0.8-A/A	3	65	0.8	0/0	265
E-Y-3-1.1-A/A	3	65	1.1	0/0	325
E-Y-4-0.8-A/A	4	65	0.8	3/3 parallel	530
E-Y-4-1.1-A/A	4	65	1.1	3/3 parallel	530
E-Y-6.35-1.1-A/A	6.35	85*	1.1	3/3 parallel	890
E-Y-8-1.1-A/A	8	85*	1.1	3/3 parallel	1340
E-Y-10-1.1-A/A	10	85*	1.1	3/3 parallel	2200
E-Y-12-0.8-A/A	12	100*	0.8	3/3 parallel	4740
E-Y-12-1.1-A/A	12	100*	1.1	3/3 parallel	4740

* rods with barrel grooving, except 10 mm at both ends of the rod without grooving.

SPECIFICATIONS OF STANDARD Nd:YAG LASER RODS

Nd Doping Level	0.8% or 1.1%
Orientation	<111> crystalline direction
Surface Quality	10-5 scratch & dig (MIL-PRF-13830B)
Surface Flatness	λ/10 at 633 nm
Parallelism	< 10 arcsec
Perpendicularity	< 5 arcmin for plano/plano ends
Diameter Tolerance	+0/-0.05 mm
Length Tolerance	+1/-0.5 mm
Clear Aperture	> 90 % of full aperture
Chamfers	0.1 mm at 45 deg
Coating	both sides coated AR @ 1064 nm, R < 0.2%, AOI = 0 deg
Barrel grooving	all dia 6.35, 8, 10, 12 mm rods with barrel grooving

RELATED PRODUCTS

NONLINEAR CRYSTALS

LASER CRYSTALS

Yb:KGW • Yb:KYW Yb-DOPED POTASSIUM GADOLINIUM TUNGSTATE

- High absorption coefficient @ 981 nm
- High stimulated emission cross section
- Low laser threshold
- Extremely low quantum defect λ_{pump}/λ_{se}
- Broad polarized output at 1023–1060 nm
- High slope efficiency with diode pumping (~ 60%)
- High Yb doping concentration

APPLICATIONS

- Yb:KGW and Yb:KYW thin (100–150 μm) crystals are used as lasing materials to generate ultrashort (hundreds of fsec) high power (>22 W) pulses. Standard pumping @ 981 nm, output: 1023–1060 nm
- Yb:KGW and Yb:KYW can be used as ultrashort pulses amplifiers
- Yb:KGW and Yb:KYW are some of the best materials for high power thin disk lasers

PROPERTIES OF Yb:KGW AND Yb:KYW

CUSTOM MANUFACTURING CAPABILITIES

- Various shapes (slabs, rods, cubes)
- Different dopant levels
- Diversified coatings

Yb-Doped Potassium Gadolinium Tungstate $(Yb:KGd(WO_4)_2)$ and Yb-doped Potassium Itrium Tungstate $(Yb:KY(WO_4)_2)$ single crystals are the laser crystals for diode or laser pumped solid-state laser applications.

Name	Yb:KGW	Yb:KYW
Yb3+ concentration	0.5–5%	0.5–100%
Crystal structure	monoclinic	monoclinic
Point group	C2/c	C2/c
Lattice parameters	a=8.095 Å, b=10.43 Å, c=7.588 Å, β=94.43°	a=8.05 Å, b=10.35 Å, c=7.54 Å, β=94°
Thermal expansion	$\alpha_a = 4 \times 10^{-6} / ^{\circ}C,$ $\alpha_b = 3.6 \times 10^{-6} / ^{\circ}C, \alpha_c = 8.5 \times 10$	—
Thermal conductivity	K _a =2.6 W/mK, K _b =3.8 W/mK, K _c =3.4 W/mK	—
Density	7.27 g/cm ³	6.61 g/cm ³
Mohs' hardness	4–5	4–5
Melting temperature	1075 °C	_
Transmission range	0.35–5.5 μm	0.35–5.5 μm
Refractive indices (λ=1.06 µm)	n _g =2.037, n _p =1.986, n _m =2.033	_
Thermo-optic coefficients @ 1064 nm	∂n _p /∂T= -15.7×10 ⁻⁶ K ⁻¹ ∂n _m /∂T= -11.8×10 ⁻⁶ K ⁻¹ ∂n _g /∂T= -17.3×10 ⁻⁶ K ⁻¹	For 20% Yb:KYW $\partial n_p / \partial T = -13.08 \times 10^{-6} \text{ K}^{-1}$ $\partial n_m / \partial T = -7.61 \times 10^{-6} \text{ K}^{-1}$ $\partial n_g / \partial T = -11.83 \times 10^{-6} \text{ K}^{-1}$
Laser wavelength	1023–1060 nm	1025–1058 nm
Fluorescence lifetime	0.3 ms	0.3 ms
Stimulated emission cross section ($\mathbf{E} \ \mathbf{a}$)	2.6×10 ⁻²⁰ cm ²	3×10 ⁻²⁰ cm ²
Absorption peak and bandwidth	α_a =26 cm ⁻¹ , λ=981 nm, Δλ=3.7 nm	α _a =40 cm ⁻¹ , λ=981 nm, Δλ=3.5 nm
Absorption cross section	1.2×10 ⁻¹⁹ cm ²	1.33×10 ⁻¹⁹ cm ²
Lasing threshold	35 mW	70 mW
Stark levels energy (in cm ⁻¹) of the ${}^{2}F_{5/2}$ manifolds of Yb $^{3+}$ @ 77K	10682, 10471, 10188	10695, 10476, 10187
Stark levels energy (in cm ⁻¹) of the ${}^{2}F_{7/2}$ manifolds of Yb ³⁺ @ 77K	535, 385, 163, 0	568, 407, 169, 0

Nd:KGW

Nd-DOPED POTASSIUM GADOLINIUM

The efficiency of Nd:KGW lasers laser radiation.

STANDARD SPECIFICATIONS

Orientation

Chamfer

Flatness

Parallelism

Perpendicularity

Surface Quality

Absorption losses

Dopant concentration

Diameter tolerance

Length tolerance

is 3-5 times higher than the one of Nd:YAG lasers. Nd:KGW laser medium is one of the best choices ensuring effective laser generation at low pump energies (0.5 - 1 J). These crystals supplied by EKSMA OPTICS feature high optical quality and great value of bulk resistans for

[010] ±30 min

+0.0/-0.1 mm

+1.0/-0.0 mm

45(±10) deg ×

0.2(±0.1) mm

λ/10 @ 633 nm

better than 30 arcsec

better than 15 arcmin

10-5 scratch & dig

(MIL-PRF-13830B)

< 0.005 cm⁻¹

2-10 at %

GADOLINIUM TU	NGSTATE
PHYSICAL AND LASER	PROPERTIES
Chemical formula	KGd(WO ₄):Nd
Lattice constants	a = 8.095 Å, b = 10 Å, c = 7.588 Å
Optical orientation	$n_g = b$, $n_p c = 20 deg$
Angle between optical axis	86.5 angular grad
Density	7.27 g/cm ³
Mohs hardness	5
Thermal conductivity	2.8 W/(m×grad) [100] 2.2 W/(m×grad) [010] 3.5 W/(m×grad) [001]
Thermal expansion	4×10 ⁻⁶ grad ⁻¹ [100] 3.6×10 ⁻⁶ grad ⁻¹ [010] 8.5×10 ⁻⁶ grad ⁻¹ [001]
Phase transition	1005 °C
Melting point	1075 °C
Transmission range	0.35–5.5 µm
Refractive index	n _g = 2.033 @ 1.067 μm n _p = 1.937 @ 1.067 μm n _m = 1.986 @ 1.067 μm
Transition	${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$
Laser wavelength	1.0672 µm
Fluorescence lifetime	120 µs
Fluorescent width	24 cm ⁻¹
Emission cross-section	4.3×10 ⁻¹⁹ cm ⁻²
Emission temperature drift	8.5×10 ⁻⁴ nm, K ⁻¹

Ti:Sapphire

Nd:KGW crystals are low las-

ing threshold, highly efficient

laser material exceptionally

suitable for laser rangefinding

applications.

Al₂O₃:Ti³⁺ - titanium-doped sapphire crystals combine outstanding physical and optical properties with broadest lasing range.

TITANIUM DOPED SAPPHIRE

Al₂O₃:Ti³⁺ indefinitely long stability and useful lifetime added to the lasing over entire band of 660-1050 nm challenge "dirty" dyes in variety of applications. Medical laser systems, lidars, laser spectroscopy, direct femtosecond pulse generation by Kerr-type mode-locking - there are few of existing and potential applications.

Ti ₂ O ₃ wt %	a, cm ⁻¹ @ 490 nm	a , cm ⁻¹ @ 514 nm	a, cm ⁻¹ @ 532 nm
0.03	0.7*	0.6	0.5
0.05	1.1	0.9	0.8
0.07	1.5	1.3	1.2
0.10	2.2	1.9	1.7
0.12	2.6	2.2	2.0
0.15	3.3	2.8	2.5
0.20	4.3	3.7	3.4
0.25	5.4	4.6	4.1

* Presented values are given with ±0.05 cm⁻¹ accuracy.

STANDARD SPECIFICATIONS

Orientation	optical axis C normal to rod axis
Ti ₂ O ₃ concentration	0.03–0.25 wt %
Figure Of Merit	>150 (>300 available on special requests)
Size	up to 15 mm dia and up to 30 mm length
End configurations	flat/flat or Brewster/Brewster ends
Flatness	λ/10 @ 633 nm
Parallelism	10 arcsec
Surface Quality	10-5 scratch & dig (MIL-PRF-13830B)
Wavefront distortion	λ/4 inch

The absorption band of Ti:Sapphire centered at 490 nm makes it suitable for variety of laser pump sources - argon ion, frequency doubled Nd:YAG and YLF, copper vapour lasers. Because of 3.2 µs fluorescence lifetime Ti:Sapphire crystals can be effectively pumped by short pulse flashlamps in powerful laser systems.

PHYSICAL AND LASER PROPERTIES

Chemical formula	Ti ³⁺ :Al ₂ O ₃
Crystal structure	Hexagonal
Lattice constants	a=4.748, c=12.957
Density	3.98 g/cm ³
Mohs hardness	9
Thermal conductivity	0.11 cal/(°C×sec×cm)
Specific heat	0.10 cal/g
Melting point	2050 °C
Laser action	4-Level Vibronic
Fluorescence lifetime	3.2 µsec (T=300K)
Tuning range	660–1050 nm
Absorbtion range	400–600 nm
Emission peak	795 nm
Absorption peak	488 nm
Refractive index	1.76 @ 800 nm

SEMICONDUCTOR TERAHERTZ CRYSTALS

ZnTe

ZnTe (Zinc Telluride) crystals with <110> orientation are used for THz generation by optical rectification process. Optical rectification is a difference frequency generation in media with large second order susceptibility. For femtosecond laser pulses which have large bandwidth the frequency components interact with each other and their difference produce bandwidth from 0 to several THz.

GaSe • ZnTe

Detection of the THz pulse occurs via freespace electro-optic detection in another <110> oriented ZnTe crystal. The THz

pulse and the visible pulse are propagated collinearly through the ZnTe crystal. The THz pulse induces a birefringence in ZnTe crystal which is read out by a linearly polarized visible pulse. When both the visible pulse and the THz pulse are in the crystal at the same time, the visible polarization will be rotated by the THz pulse. Using a $\lambda/4$ waveplate and a beamsplitting polarizer together with a set of balanced photodiodes, it is possible to map THz pulse amplitude by monitoring the visible pulse polarization rotation after the ZnTe crystal at a variety of delay times with respect to the THz pulse. The ability to read out the full electric field, both amplitude and delay, is one of the attractive features of time-domain THz spectroscopy.

ZnTe are also used for IR optical components substrates and vacuum deposition. NOTE: ZnTe crystal contains micro bubbles and they are visible in projection of illuminated crystal. However this does not affect the THz generation. We do not accept complains on presence of bubbles in crystal.

Zn]	Гe.	<1	10)>	CI	JT
_	,				~~~	

Catalogue number	Size, mm	Thickness, mm	Holder, mm	Price, EUR
ZnTe-100H	10×10	0.1	Ø25.4	890
ZnTe-200H	10×10	0.2	Ø25.4	730
ZnTe-500H	10×10	0.5	Ø25.4	620
ZnTe-1000H	10×10	1.0	Ø25.4	510
ZnTe-2000H	10×10	2.0	Ø25.4	750

GaSe

GaSe (Gallium Selenide) crystals used for THz generation shows a large bandwidth of up to 41 THz. GaSe is a negative uniaxial layered semiconductor with a hexagonal structure of 62 m point group and a direct bandgap of 2.2 eV at 300 K. GaSe crystal features high damage threshold, large nonlinear optical coefficient (54 pm/V), suitable transparent

GaSe crystal mounted in Ø25.4 mm holder

range, and low absorption coefficient, which make it an alternative solution for broadband mid infrared electromagnetic waves generation. Due to broadband THz generation and detection using a sub-20 fs laser source, GaSe emitter-detector system performance is considered to achieve comparable or even better results than using thin ZnTe crystals. In order to achieve frequency selective THz wave generation and detection system, GaSe crystals of appropriate thickness should be used. NOTE: because of material structure it is possible to cleave GaSe crystal along (001) plane only. Another disadvantage is softness and fragility of GaSe.

GaSe, Z-CUT

Catalogue number	Clear aperture, mm	Thickness, µm	Holder, mm	Price, EUR
GaSe-10H1	Ø7	10	Ø25.4	1950
GaSe-30H1	Ø7	30	Ø25.4	1625
GaSe-100H1	Ø7	100	Ø25.4	1475
GaSe-500H1	Ø7	500	Ø25.4	1460
GaSe-1000H1	Ø7	1000	Ø25.4	1635
GaSe-2000H1	Ø7	2000	Ø25.4	1810

Please note that from now all standard GaSe crystals are provided mounted into Ø25.4 mm ring holders. Crystals could be mounted into Ø40 mm holders under your request.

KGW • $Ba(NO_3)_2$

CRYSTALS FOR STIMULATED RAMAN SCATTERING

EKSMA OPTICS offers crystalline materials – Barium Nitrate – $Ba(NO_3)_2$ and undoped potassium gadolinium tungstate KGd(WO₄)₂ or KGW which have attracted much interest for stimulated Raman scattering (SRS). These materials can be used for frequency conversion in lasers for extending the tuning range. SRS in crystals is compatible with current all-solid-state technology and provides a very simple, compact means of frequency conversion.

Ba(NO₃)₂ has a highest Raman gain coef-

ficient. The gain coefficient affects the threshold for Raman laser. However, the thermal lensing is particularly strong in this material. This is indicated by the large value $\partial n/\partial T$ and low thermal conductivity. Thermal effects are significantly smaller in KGW. This along with the high damage threshold make the crystal an excellent candidate for power scaling.

Comparing $Ba(NO_3)_2$ and KGW for Raman application $Ba(NO_3)_2$ is more optimal in case of ns and longer pulses, KGW – in case of shorter pulses.

Ba(NO₃)₂ PHYSICAL AND OPTICAL PROPERTIES

Crystal symmetry	cubic, P2 ₁ 3
Transmission range	0.35–1.8 µm
Density	3.25 g/cm ³
Hardness Mohs	2.5–3
Refractive indices @ 1064 nm	n = 1.555
Raman shift	1048 cm ⁻¹
Raman gain, pump 1064 nm	11 cm/GW
Thermal conductivity, W/mK	1.17
∂n/∂T	-20×10-6 K-1
Optical Damage Threshold	~ 0.4 GW/cm ²

Raman wavelengths in KGW crystal (oscillation coefficient 901.5 cm⁻¹) and $Ba(NO_3)_2$ crystal (oscillation coefficient 1048.6 cm⁻¹) are given in the table below.

STANDARD KGW CRYSTALS, updoped, b-cut

Dimensions, mm

 $7 \times 7 \times 30$

5 × 7.5 × 30

Catalogue number

KGW-701

KGW-702

KGW PHYSICAL AND OPTICAL PROPERTIES

Crystal symmetry	monoclinic, C2/c
Transmission range	0.35–5.5 μm
Density	7.27 g/cm ³
Hardness Mohs	4-5
Refractive indices @ 1064 nm	n _g = 2.061; n _m = 2.010; n _p = 1.982
Raman shift	901 cm ⁻¹ (p[mm]p)
	768 cm ⁻¹ (p[gg]p)
Raman gain, pump 1064 nm	3.3 cm/GW (901 cm ⁻¹)
	4.4 cm/GW (768 cm ⁻¹)
Thermal conductivity, W/mK	K _a =2.6; K _b =3.8; K _c =3.4
∂n/∂T	0.4 × 10 ⁻⁶ K ⁻¹
Optical Damage Threshold	> 10 GW/cm ²

Stokes	KGW pumped @ 532 nm	KGW pumped @ 1064 nm	Ba(NO₃)₂ pumped @ 532 nm	Ba(NO ₃) ₂ pumped @ 1064 nm	Typical efficiency, %
1 Stoke	558	1177	563	1197	35–70
2 Stoke	588	1316	598	1369	20–40
3 Stoke	621	1494	638	1599	10–15
4 Stoke	658	1726	684	1924	<10
1 Antistoke	507	970	503	957	10–30

STANDARD SPECIFICATIONS

	Ba(NO ₃) ₂	KGW
Surface Quality, scratch & dig (MIL-PRF-13830B)	40-20	10-5
Flatness @ 633 nm	λ/4	λ/8
Maximal element dimensions, mm	10×10×100	10×10×80

VONLINEAR CRYSTALS

Price, EUR

600

785

Coating

Uncoated

BBAR/BBAR@400-700 nm

Barium & Strontium tungstate-molybdate CRYSTALS FOR RAMAN SHIFT

Ba(MoO₄)_x(WO₄)_{1-x}, 0<x<0.01</p>

- Sr(MoO₄)_X(WO₄)_{1-X}, 0<x<0.01
- Sr(MoO₄)_X(WO₄)_{1-X}, 0.99<x<1</p>

New Barium and Strontium tungstatemolybdate single crystals feature higher Raman gain as compared to KGW or CaCO₃ and relatively higher thermal conductivity as compared to a Ba(NO₂)₃.

Barium and Strontium tungstate-molybdate single crystals are grown and provided with cut along a-direction. Active elements do not require precise positioning since stimulated Raman scattering (SRS) threshold slightly depends on the crystal orientation relative to pump polarization (within a few percent) and minimum threshold is reached at E||c. In this case, the polarization of the pump and stokes pulses are parallel to the optical axis (c-axis).

The crystals are water-insoluble and durable. Available sizes and shapes of active elements are rectangular up to $10 \times 10 \times 100$ mm or with cylindrical cross-section up to Ø10 × 100 mm.

APPLICATIONS

- Raman converters new crystals extend the capabilities of the Raman devices in addition to commercially available Ba(NO₂)₃, CaCO₃, KGW crystals, since new crystals have different values of the Stokes shift and allow to obtain a laser radiation at the other wavelengths
- Raman lasers including self-Raman generation
- Laser pulse compressors based on stimulated Raman scattering effect

RAMAN WAVELENGTHS GENERATION IN BARIUM TUNGSTATE, STRONTIUM TUNGSTATE AND STRONTIUM MOLYBDATE SINGLE CRYSTALS

Crystal	Barium t	ungstate	Strontium	tungstate	Strontium	molybdate
Chemical formula	Ba(MoO ₄) 0 < x ·	√(WO ₄) _{1-X} < 0.01	Sr(MoO ₄) 0 < x ·	_X (WO ₄) _{1-X} < 0.01	Sr(MoO ₄) 0.99 <	_x (WO₄) _{1-x} ≤ x < 1
Oscillation coeficient	925	cm-1	921.5	5 cm ⁻¹	888	cm-1
Pump	1064 nm	532 nm	1064 nm	532 nm	1064 nm	532 nm
1 Stoke	1180	560	1180	559	1175	558
2 Stoke	1325	590	1324	590	1312	588
3 Stoke	1510	624	1507	624	1485	620
4 Stoke	1755	662	1751	662	1710	656
1 Antistoke	969	507	969	507	972	508

PHYSICAL AND OPTICAL PROPERTIES

Crystal	Barium tungstate	Strontium tungstate	Strontium molybdate
Chemical formula	Ba(MoO ₄) _x (WO ₄) _{1-x} 0 < x < 0.01	$Sr(MoO_4)_X(WO_4)_{1-X}$ 0 < x < 0.01	Sr(MoO ₄) _x (WO ₄) _{1-x} 0.99 < x < 1
Crystal structure	Tetragonal, space group I4₁/a	Tetragonal, space group I4 ₁ /a	Tetragonal, space group I4 ₁ /a
Density	6.35 g/cm ³	6.26 g/cm ³	4.65 g/cm ³
Thermal conductivity	2.3 W/m·K	3 W/m·K	4 W/m·K
Transparency range	0.45 – 5.4 μm	0.25 – 5.4 μm	0.25 – 5.4 μm
Refractive index	n _o =1.806, n _e = 1.804 at 1064 nm n _o =1.848, n _e = 1.846 at 532 nm	n _o =1.84, n _e = 1.85 at 1064 nm n _o =1.87, n _e = 1.88 at 532 nm	n _o =1.878, n _e = 1.88 at 1064 nm n _o =1.919, n _e = 1.924 at 532 nm
Stokes shift	925 cm ⁻¹	921.5 cm ⁻¹	888 cm ⁻¹
Steady-state Raman gain at 1064 nm	8.5 cm/GW	5 cm/GW	5.5 cm/GW
Can be supplied Nd doped: Nd ³⁺ concentration in the crystal	0 – 0.15 at. % (on Ba site)	0 – 1.5 at. % (on Sr site)	0 – 1.5 at. % (on Sr site)
Surface optical damage threshold (1064 nm, 4.2 ns)	2 GW/cm ²	1.9 GW/cm ²	0.8 GW/cm ²
Mohs hardness	4	4	4

BaWO₄ CRYSTALS FOR RAMAN GENERATION, polished, a-cut

Catalogue number	Dimensions, mm	Coating	Price, EUR
BaWO-501	5 × 5 × 20	Uncoated	1300
BaWO-502	5 × 5 × 30	Uncoated	1700
BaWO-503	5 × 5 × 50	Uncoated	2060

LASER CRYSTALS

NONLINEAR CRYSTALS

Cr⁴+:YAG crystals

Fe:ZnSe, Cr:ZnSe, Co:ZnS solid-state saturable absorbers also are available upon request

PASSIVE Q-SWITCHING CRYSTALS

Co:Spinel (Co²⁺:MgAl₂O₄) is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 µm, in particular, for eye-safe 1.54 µm Er:glass laser, but also works at 1.44 µm and 1.34 µm wavelengths. High absorption cross section (3.5×10^{-19} cm²) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e.

Fig. 1. Absorption spectra of the Co:Spinel crystal

the ratio of initial (small signal) to saturated absorption is higher than 10 (Fig. 1).

Cr⁴⁺:YAG is one of the best passive Q-switch for high power lasers emitting at ~1 μ m wavelength. Standard diameter apertures – 5, 8, 9.5 mm and various initial transmission (or optical density) are available upon request. Also Cr⁴⁺:YAG laser rods for ultra-short pulse solid-state lasers are available.

Fig. 2. Transmission of AR coated at 1064 nm Cr:YAG Q-switch with initial transmission of 80% at 1064 nm

SPECIFICATIONS

	Co:Spinel	Cr4+:YAG
Working wavelength range, µm	1.2 – 1.6	0.8 - 1.2
Absorption cross-section, cm ²	3.5×10 ⁻¹⁹ (at 1.54 µm)	5×10 ⁻¹⁸ (at 1.06 µm)
Initial transmittance, %	30 – 99	20 – 99
Transmission tolerances	±2 %	±2 %
Wavefront distortion	<λ/10 @ 632.8 nm	<λ/8 @ 632.8 nm
Diameter tolerances	+0.0 / -0.2 mm	+0.0 / -0.2 mm
Parallelism error	< 20 arcsec	≤ 30 arcsec
Perpendicularity	< 5 arcmin	≤ 15 arcsec
Surface quality	10 – 5 scratch & dig (per MIL-O-13830A)	20 – 10 scratch & dig (per MIL-O-13830A)
Chamfer	<0.1 mm @ 45°	<0.1 mm @ 45°
AR Coating reflectivity	<0.2 % @ 1540 nm	<0.2 % @ 1064 nm

STANDARD Cr4+: YAG CRYSTALS

Catalogue number	Initial Transmission, %	Diameter, mm	Price, EUR
CrYAG-07-20	20	7	130
CrYAG-07-30	30	7	130
CrYAG-07-35	35	7	130
CrYAG-07-40	40	7	130
CrYAG-07-45	45	7	130
CrYAG-07-50	50	7	130
CrYAG-07-65	65	7	130
CrYAG-07-70	70	7	130
CrYAG-07-80	80	7	130
CrYAG-07-85	85	7	130

STANDARD Co:SPINEL CRYSTALS

Catalogue	Initial	Diameter,	Price,
number	Transmission, 76	mm	EUR
CoMALO-05-30	30	5	725
CoMALO-05-40	40	5	725
CoMALO-05-50	50	5	725
CoMALO-05-60	60	5	725
CoMALO-05-70	70	5	725
CoMALO-05-80	80	5	725
CoMALO-05-90	90	5	725

MEKSMA

OPTICS

Positioners & Holders

830-0001

RING HOLDERS FOR NONLINEAR CRYSTALS

830-0001-10

830-0001-06

- Black anodized aluminium body
- Teflon or white anodized aluminium adapter for particular crystal size
- Easy assembling and disassembling

Ring mounts made from black anodized aluminum and Teflon or white anodized aluminium adapter are available for safe and convenient handling of nonlinear crystals. The crystals are glued into white anodized aluminium adapter (830-0001-06). No glue is used for fixation of the crystal into open ring holder with teflon adapter. The standard sizes are \emptyset 25.4 or \emptyset 30 mm and thickness – 6, 10.5, 13.5 or 17.5 mm depending on crystal size.

Please indicate the exact crystal size when ordering.

Part No	Diameter,	Thickness,	Max. acceptable	Price,
	mm	mm	crystal size, mm	EUR
830-0001-06	25.4	6	12×12×0.5	50
830-0001-10	25.4	10.5	12×12×3	50
830-0001-13	25.4	13.5	12×12×6	50
830-0001-17	25.4	17.5	12×12×15	90
830-0002-10	30	10.5	15×15×3	50
830-0002-13	30	13.5	15×15×6	50
830-0002-17	30	17.5	15×15×15	90

HOUSING ACCESSORIES

Positioning Mount 840-0199 for Nonlinear Crystal Housing *See page 2.26*

830-0001-10

Phase matching plane marking

830-0001-06

LASER CRYSTALS

840-0193

KINEMATIC POSITIONING MOUNT

- For Ø25.4 mm (1 inch) ring holders
- Kinematic design
- Tilt/tip range ±2°
- Sensitivity 3 arcsec
- Both tilt and tip controlled from aside the optical path
- Fine adjustment screws with 0.25 mm pitch
- Hardened seats under adjustment screws

840-0199

840-0199 Positioning Mount with 830-0001 Ring Holder

POSITIONING MOUNT FOR NONLINEAR CRYSTAL HOUSING

- Accepts Ø25.4 mm and up to 10.5 mm thickness ring housings
- Kinematic design
- Wedge and ball drive mechanism
- Tilt/tip range: ±2°
- Sensitivity: 3 arcsec
- Fine adjustment screws with 0.25 mm pitch
- Hardened seats under adjustment screws
- Rotation range: 360°
- Scale gradation: 2°
- Compact and robust design
- Material: black anodized aluminum

This kinematic mount accepts crystal housings of Ø25.4 mm and thickness up to 10.5 mm.

Large knobs on the adjusting screws relieve the strain on operator fingers during adjustment. Both screws protrude from the top allowing convenient adjustment outside the laser beam path and providing easy access for adjustments in densely packed optical set-ups.

An extra M4 tapped hole on the side of the base allows you to operate the mount as a side-drive adjustment control mount. The mount is made of black anodized aluminium to help minimize reflections.

A retaining ring M27×1, two Teflon rings and a tightening key to fix the crystal ring housing is included.

removable rod for precise rotation

Your LL for @25.4(1") optics 55

MEKSMA

OPTICS

POSITIONERS & HOLDERS

Many of widely used nonlinear crystals are susceptible to ambient humidity, for example KD*P, BBO, LBO. Protective coatings applied to the surface can reduce degradation to some extent only. To improve the protection of surfaces of the crystals from the degradation it is desirable to keep

Crystal Ovens

the crystals at higher than ambient temperature, which helps avoid condensation on the crystal surfaces.

In addition, if the crystal is used for harmonics generation, the phase-matching angle depends on crystal temperature. For example, the output power of second harmonics generator based on KD*P crystal can decrease by 50 % if the crystal temperature changes just by one degree, hence for good laser stability precise crystal temperature stabilization is necessary.

TC2 • CO1

TEMPERATURE CONTROLLER TC2 WITH OVEN CO1

TC2 and CO1 is high temperature set (up to 200 °C) consisting of thermocontroller TC2 and crystal oven CO1. TC2 has two independent outputs and can control two CO2-30 ovens simultaneously. Controller is equipped by LAN and USB computer control interfaces.

The nonlinear crystal is mounted into adapter before insertion into oven CO1. Such design facilitates handling and replacement of the crystal. The nonlinear crystal can be sealed with fused silica windows in order to provide extra protection. The standard adapters are 30 and 50 mm length with apertures of 3×3, 4×4, 5×5, 6×6 mm and up to 12×12 mm size. Oven is delivered with one, customer's specific size of adapter. Adapters for different sizes can be ordered separately.

SPECIFICATIONS

Model	TC2+CO1-30	TC2+CO1-50
Quantity of ovens possible to connect to one controller TC2	2	1
Temperature tuning range	RT – 200 °C	
Maximum crystals dimensions	12×12×30 mm	12×12×50 mm
Sealing (optional)	FS windows	
Accuracy	± 0.5 °C	
Long-term stability	± 0.05 °C	
Control interfaces	LAN, USB	
Mains	90–264 V, 47–66 Hz	
Power consumption	< 50 W	
Dimensions, Dia×D	Ø52×52 mm	Ø52×72 mm

Specifications are subject to changes without advance notice.

Code **	Description, features	Price, EUR
Thermocontroller TC	2	
TC2	Thermocontroller, Fuzzy logic, RT-200 °C, can control two CO1 ovens, long-term stability ±0.05 °K, worldwide mains	1063
Crystal Ovens for TC	2	
For crystal length up to	30 mm	
CO1-30-y/y	Standard crystal sizes *	622
CO1-30-y/z	Custom crystal sizes	672
CO1-30S-y/y	Sealed, standard crystal sizes *	1022
For crystal length up to	50 mm	
CO1-50-y/y	Standard crystal sizes *	766
CO1-50-y/z	Custom crystal size	828
CO1-50S-y/y	Sealed, standard crystal sizes *	1166
Mounting accessorie	25	
MS-4	Adapter for CO1 oven mounting on tilt stage. Tilt stage should be ordered separately	150
* Sizes 3×3, 4×4, 5×5, 6×	6,12×12 are standard. ** y/y, y/z – crystal size.	

Heatpoint

ROUND OVEN FOR NONLINEAR CRYSTALS

Heatpoint Crystal oven

HP1 dimensions

HP2 dimensions

Heatpoint is a compact round oven designed for heating of humidity sensitive nonlinear crystals. It is used to prevent moisture condensation on the crystal faces or for thermo-stabilization of the crystals. The oven features precise long term stability and compact design. Heatpoint is designed to be used with common oneinch optics positioning mounts or with our special positioning mount PM1. A small thermocontroller is attached to the oven on a wiring. Required temperature of the oven is preset in the factory and it can be chosen by the customer in the range between 30 °C and 80 °C. Preset temperature can be adjusted in ± 5 °C range.

Heatpoint oven has special crystal adapter and fits crystals of size up to $6 \times 6 \times 30$ mm. The adapter is made exactly for particular crystal size and it cannot be used for a crystal of a different size.

SPECIFICATIONS

Model	HP1	HP2
Maximum crystals dimensions	6 × 6 × 15 mm	6 × 6 × 30 mm
Preset temperature	30 – 80 °C	
Temperature tuning range near preset	±5 °C	
Long-term stability	± 0.15 at 30-50 °C ± 0.2 at 50-80 °C	
Powering requirements	12 – 16 V	
Power consumption (PMAX)	5.5 W	
Sensor type	PTC thermo resistor	
Output connector	2.5 mm mono plug	
Thermocontroller size	18 × 12 × 42.5 mm	
Distance (wiring length) from oven to thermocontroller	180 mm	
Oven dimension, dia × L	Ø25.4 × 29 mm	Ø25.4 × 47 mm

MOUNT SPECIFICATIONS

Model	PM1
Adjusting angles, tilt and tip	± 3.5°
Rotation along Z-axis	180°

Code	Description	Price, EUR
HP1	Heatpoint oven (Ø25.4 × 29 mm) with attached thermocontroller	200
HP2	Heatpoint oven (Ø25.4 × 47 mm) with attached thermocontroller	200
PM1	Positioning mount for Heatpoint ovens	250

MEKSMA OPTICS

NONLINEAR CRYSTALS

LASER CRYSTALS

CH8

OVEN FOR NONLINEAR CRYSTALS

CH8 is compact oven with built-in thermocontroller for nonlinears crystals to keep them at stabilized temperature in range 30...60 °C. It is ideal for larger aperture crystals like KD*P. The crystals with up to

15 × 15 mm dimensions can be mounted. Each oven is made exactly for specific crystal aperture size, so it cannot be used for different size crystals.

SPECIFICATIONS

Model	CH8-20	CH8-30	CH8-50
Temperature range		30 – 60 °C	
Maximum crystals dimensions	15×15×20 mm	15×15×30 mm	15×15×50 mm
Temperature stability		± 0.2 °C	
Power consumption	<6 W	<6 W	<9 W
Control interface		CAN	
Crystal center position above pad		16 mm	
Dimensions, W×H×D	48×44×26 mm	48×44×36 mm	48×44×56 mm

Specifications are subject to changes without advance notice.

Code **	Description, features	Price, EUR
CH8-20 - crystal length	n up to 20 mm	
CH8-20-y/y-x	Standard crystal sizes *	452
СН8-20-у/z-х	Non-standard crystal size	508
CH8-30 - crystal length	up to 30 mm	
CH8-30-y/y-x	Standard crystal sizes *	509
СН8-30-у/z-х	Non-standard crystal size	572
CH8-50 - crystal length	up to 50 mm	
CH8-50-y/y-x	Standard crystal sizes *	580
СН8-50-у/z-х	Non-standard crystal size	733
Mounting accessories	2	
MS-1	Two axis tilt adjustment 5 degrees range, suitable for all types of CH8 or CH9 crystal ovens	214
MS-2	Two axis tilt stage, adjustment in 5 degree range, fits two pc. of CH8 or CH9 ovens	358
MS-3	Adapter for CH8 or CH9 mounting on rotary stage, 15 degrees fine tuning, angle read-out. Rotary stage should be ordered separately	119
Power supply PS-12		
PS-12	Power supply for CH8 or CH9 crystal oven, 100 – 240 VAC mains, +12 VDC output	61

* Sizes 3×3, 4×4, ..., 15×15 are standard.

** y/y, y/z – crystal size, x – preset temperature in degrees of Celsius (30-60 °C range).

CH8 dimensions

RAMAN CRYSTALS

CH9

OVEN FOR NONLINEAR CRYSTALS

Ciystal

CH9 is compact oven with built-in thermocontroller for nonlinears crystals to keep them at stabilized temperature in range 30...80 °C. The crystals with aperture up to 12×12 mm and length up to 15 mm can be mounted. CH9-30 oven is designed for crystal length up to 30 mm. Crystal oven is equipped with crystal adapters (holders), similar design as CO1, that can be easy replacable for different crystal size. Crystal adapters can be ordered separately.

SPECIFICATIONS

Model	CH9-15	CH9-30
Temperature range	30 – 60 °C	
Maximum crystals dimensions	12×12×15 mm	12×12×30 mm
Temperature stability	± 0.2 °C	
Power consumption	<6 W	<9 W
Control interface	CA	AN .
Crystal center position above pad	23 r	nm
Dimensions, W×H×D	48×50×36 mm	48×50×56 mm

Specifications are subject to changes without advance notice.

CH9 dimensions

Code **	Description, features	Price, EUR
CH9-15 - crystal I	length up to 15 mm	
CH9-15-y/y-x	Standard crystal sizes *	588
CH9-15-y/z-x	Non-standard crystal sizes	642
CH9-30 - crystal I	ength up to 30 mm	
СН9-30-у/у-х	Standard crystal sizes *	659
CH9-30-y/z-x	Non-standard crystal sizes	733
Mounting access	sories	
MS-1	Two axis tilt adjustment 5 degrees range, suitable for all types of CH8 or CH9 crystal ovens	214
MS-2	Two axis tilt stage, adjustment in 5 degrees range, fits two pc. of CH8 or CH9 ovens	358
MS-3	Adapter for CH8 or CH9 mounting on rotary stage, 15 degrees fine tuning, angle read-out. Rotary stage should be ordered separately	119
Bower cupply BS	2.10	
Fower supply Fa	-12	-
PS-12	Power supply for CH8 or CH9 crystal oven, 100-240 VAC mains, +12 VDC output	61

* Sizes 3×3, 4×4, ...,15×15 are standard.

** y/y, y/z – crystal size, x – preset temperature in degrees of Celsius (30-60 °C range).

RELATED PRODUCTS

Mount MS-1 for fine tuning of CH8 or CH9 angle is available. The tuning range is $\pm 2.5^{\circ}$.

NONLINEAR CRYSTALS